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Abstract

The aim of this thesis is to evaluate the quality of open boundary conditions
of regional Ocean models downscaled in large-scale Ocean basin solutions by
calculating the Okubo-Weiss parameter, which qualifies the type of flow.

The scope of the open boundary conditions evaluation encompasses schematic
test-cases as well as realistic regional Ocean models.

The test-cases consist in a gaussian elevation release, a freshwater cylin-
der, a schematic upwelling situation (to be implemented) and regional Ocean
models of Western Iberia and the bay of Biscay, both forced with realistic
conditions. A two-level, one-way nesting experiment was considered. The
idea is to provide an unbounded reference solution to compare with the
nested model and to provide adequate external forcing when required. A
shallow waters equations numerical model was developed for the schematic
experiments, whereas the hydrodynamic model, MOHID, was used for the
regional applications.

It was found that systematic flow-type inversions tend to occur near the
open boundaries, even in situations where the unbounded reference solution
displays monotonic flow types at the same location. The Okubo-Weiss cri-
terion is arguably found by this thesis to provide an objective measurement
of the performance of the open-boundary condition.

The downscaling methodology applied to the regional applications yields
robust results, capable of sustaining an operational system for regional
Ocean forecasts.

i



ABSTRACT

ii



Resumo

O objectivo da presente tese de doutoramento consiste em avaliar a qual-
idade das condições de fronteira aberta em modelos matemáticos de cir-
culação oceânica regionais, aninhados em modelos globais. O parâmetro de
Okubo-Weiss é proposto para identificar o tipo de escoamento.

O âmbito da avaliação das condições de fronteira aberta engloba casos
de teste esquemáticos assim como aplicações realistas a regiões do Oceano.

Os casos de teste consistem na evolução duma elevação de ńıvel gaus-
siana, dum ciĺındro de água doce, numa situação de afloramento costeiro,
e em aplicações à peńınsula Ibérica e à báıa da Biscaia com forçamentos
realistas. Uma experiência de aninhamento unidireccional de dois mode-
los foi concebida. A ideia consiste em garantir a existência duma solução
de referência localmente sem fronteiras para permitir a comparação com a
solução do modelo aninhado. Um modelo numérico das equações de águas
rasas foi desenvolvido para implementar os casos de teste esquemáticos. O
modelo hidrodinâmico MOHID foi utilizado para as aplicações regionais.

Foi descoberto que uma inversão sistemática do tipo de escoamento tende
a occorer junto às fronteiras abertas, mesmo em situações quando a solução
de referência apresenta, para a mesma região, um tipo de escoamento uni-
forme. É sugerido que o critério de Okubo-Weiss permite uma medida ob-
jectiva da performance da condição de fronteira aberta.

A metodologia de downscaling aplicada a modelos regionais ocêanicos
retorna resultados robustos, capazes de suster um sistema operacional de
previsão de correntes.
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• Modelo hidrodinâmico barocĺınico
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tion of the north-Atlantic ocean basin, page 208

RHS Right-hand side, page 17

ROFI RegiOn of Freshwater Influence, page 66

ROMS Regional Ocean Modeling System, page 4
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Chapter 1

Introduction

1.1 The problem and the hypothesis

Implementing regional Ocean applications, designed to model coastal and es-
tuarine systems, usually downscaled in larger-scale Ocean basin solutions, al-
ways causes considerable challenges to the modeller when it comes to choose
(and implement) an adequate open boundary condition. On the one hand,
there is the need to let perturbations generated within the solution to leave
the domain unperturbed. On the other hand, the realism of the solution
depends on the presence of physical processes that are generated at scales
of length and time far beyond and below the scales possibly resolved by the
regional numerical model. Thus there is the need to provide to the regional
model with exterior, accurate information in order to ensure the existence
of the externally generated physical processes and features, and in order
for the solution developed within the regional model to be realistic. In the
latter case, several mathematical models that solve the turbulent equations
of motion were put forward based on the hypothesis of Reynolds (Boussi-
nesq, 1877; Reynolds, 1895), and later by Prandtl (1931) and Kolmogorov
(1942, 1962). However, despite substantial positive experimental results cor-
roborating the latter hypothesis, the scientific field of turbulence and ocean
turbulence in general is still an open and unsolved problem of physics in this
twenty-first century. In the former case (the physical processes of the larger
scales), the solution is deterministically solved by the equations of motion as
a boundary value problem. The problem lies in implementing the mapping
of information from the large scale model to the regional scale model. There
is now a considerable family of different types of open boundary conditions.
Each performing better than the others under well-defined circumstances.
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The challenge lies in choosing the correct ones. Poorly chosen open bound-
ary conditions (OBC) could return worse results than a closed wall at the
sytem. Thus, which OBC to choose from? This is the biggest question each
modeler must consider, for each new system he considers.

The aim of this thesis is to assess the performance of OBC of regional
ocean models downscaled in large-scale Ocean basin solutions, under the
hypothesis that there must exist some scalar diagnostic quantity that can
qualify the type of flow locally (hyperbolic, elliptic), and that this quantity
should be a guide in helping to measure the negative effects of the open
boundary condition on the local flow. The quantity put forward to this aim
by this thesis was independently found by Okubo (1970) and Weiss (1991),
and it is sometimes referred in the literature (Zavala Sanson and Sheinbaum,
2008; Isern-Fontanet et al., 2004; Lapeyre et al., 2001; Hua and Klein, 1998;
Basdevant and Philipovitch, 1994) as the function, or parameter, of Okubo-
Weiss. The global objective is to have a practical tool, objectively capable
of classifying the nature of the flow, and to design experimentations that
guide the modeller in the process of identifying where does the implemented
OBC yields undesired results and, if possible, by how much.

Another aspect of this thesis, concerning the downscaling of large-scale
Ocean basin solutions in regional models, is to propose a consistent method-
ology capable of yielding realistic results for any regional domain of appli-
cation, provided the input of a large-scale solution, a realistic atmospheric
forcing and a data flow from the major rivers.

1.2 The background in numerical modeling of Oceans

Numerical models are a fundamental tool to study the behavior of plausible
solutions to the equations that describe the motion of fluids. Historically, to
better understand the complex physics of fluids, approximate solutions to
simplified forms of the equations of motion of momentum and of continuity
were considered. The simplified equations would yield only the dominant
terms in the general non-linear equations of motion, each depending on the
type of system in study. The richness and diversity in the predominant type
of forces acting on fluids, from the gravitacional force to the capillary force,
make the complete equations of motion a very complex and challenging
system to study. For some of these systems, sometimes, but very few times,
an analytical solution is found. But very often the solution is quite simple
and doesn’t represent the complex flows we are accustomed to view in nature,
in the rivers, in the atmosphere or in the seas.
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However, even if many processes can be studied with simplified versions
of the equations of motion, modeling the full hydrodynamics of coastal and
estuarine systems requires the use of the primitive Ocean equations, which
consist of the full three-dimensional Navier-Stokes equations in a rotating
reference frame. Granted, the validity of the hydrostatic approximation and
the near-incompressible hypothesis help a great deal in simplifying the full
Navier-Stokes equations. But still, a very rich and complex range of pro-
cesses lies within the primitive Ocean equations. A numerical approach in
solving the non-linear equations of motion is often tempting, and many nu-
merical algorithms were implemented to solve partial difference equations
(PDE) in the past century, accompanying the advances of modern comput-
ing. One of the first scientific fields where the first modern calculators were
dedicated, was the field of meteorology, for the sheer sake of its usefulness.
Richardson was one of the first person to imagine such a machine capable of
predicting the state of the weather in the late nineteenth century by means
of a finite-differencing scheme, at a time when a computer was a person
that performed calculations for a living. However, little could he imagine
at the time that the discretized equations of continuum fields would yield
more often divergent solutions rather than convergent ones. Little could he
imagine the richness of convergent solutions from numerical models that are
unrealistic.

Since the late nineteenth century, many numerical algorithms based on
the finite-differences (Courant et al., 1959) were implemented, and many
practicalities were tackled, solved and, if not completely solved, properly
identified and classified. Just to mention a few, the long term stable integra-
tion of PDE numerical solvers (Arakawa, 1966) and the pressure-gradient er-
ror in topography following Ocean models (Beckmann and Haidvogel, 1993)
were some issues identified that are not yet completely solved. Another class
of approach at solving PDE with numerical models are the finite-elements
methods. Even if finite-elements are in a rising trend in computational fluid
dynamics (CFD), the broad class of available numerical models is entrinched
on a legacy dating with more than a century of development based on finite-
differences methods. Specifically for the Ocean, todays numerical models
are all descendant from the original model of Bryan (1969) and Cox and
Bryan (1984). The several new classes of models that appeared were due to
transformations on the vertical coordinate (from cartesian spherical coordi-
nates, known as z-level coordinates(Bryan, 1969; Cox and Bryan, 1984), to
topography following coordinates, known as σ (Blumberg and Mellor, 1987)
and generalized s-coordinate (Gerdes, 1993), and finally to isopycnal follow-
ing coordinates (Bleck, 1978)). Griffies (2004) makes an overall review on
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the matter and further discusses the different types of vertical coordinates
in Chassignet and Verron (2006, Ch. 2). Furthermore, Griffies (2004) as-
sesses some key aspects of Ocean and regional Ocean modeling that remain
unsolved or are only partially solved. Namely:

• The need to create a common modeling environment or platform that
makes it easy to switch between numerical schemes. Furthermore, the
need to define standards of data formatting in order to optimize the
global modeling community workload.

• The validity of the hydrostatic approximation when simulating do-
mains with less than 1 km of horizontal resolution. In this thesis,
the maximum resolution of regional Ocean models is roughly 2 km.
Nevertheless, some regions are known to be prone to double-diffusive
processes (Huppert and Turner, 2006) like the Gulf of Cadiz where
occurs the Mediterranean outflow. Such question definitively would
be worth it to be raised.

• The equation of state (EOS) of the Ocean for density. How accurate
should the thermodynamics of the Ocean be? Fairly complex polyno-
mial approximation to the full non-linear EOS are available (Mcdougall
et al., 2003; Jackett and Mcdougall, 1995). To which extent does this
complexity is required?

• To properly define OBCs.

Today, there exists several regional ocean modeling tools such as HYCOM,
the hybrid generalized vertical coordinate ocean model, based on isopycnal-
following vertical coordinates (Bleck, 2002); ROMS, the regional ocean mod-
eling system based on a generalized topography-following vertical coordi-
nate (Shchepetkin and McWilliams, 2005); NEMO-OPA, based on a gen-
eralized equipotential-following vertical coordinate. The latter models are
dedicated to hydrodynamics alone, but some try to be more comprehensive
and implement water-quality, biological and geochemical models, in order
to model the full marine system, such as MOHID (Miranda et al., 1999;
Braunschweig et al., 2003, 2004; Leitão et al., 2005) and ROMS. During the
course of this work, MOHID will be the tool of choice to model regional
ocean systems. MOHID is a full modeling suite developed in fortran95 in
an object-oriented modular philosophy (Miranda et al., 1999; Braunschweig
et al., 2004) consisting of a finite-volume hydrodynamical model, a water-
quality model (Saraiva et al., 2007), a sand and cohesive sediments trans-
port model, an ecological model (Mateus and Neves, 2008; Trancoso et al.,
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2005), an oil-dispersion model (Balseiro et al., 2003), a lagrangian tracer
model and a jet (submarine outfall) lagrangian-eulerian model. MOHID is
capable to model complex water systems with its integrated approach. It
models lakes, lagoons (Malhadas et al., 2009b, 2010, 2009a), rivers and estu-
aries (Vaz et al., 2009, 2007, 2005; Canas et al., 2009), regions of freshwater
influence in the Ocean (Marin and Campuzano, 2008) and regional Oceanic
domains (Leitão et al., 2005). Thus its scope is quite broad, scaling from
the meter to the hundreds of kilometers. It cannot model global Oceanic
systems because it doesn’t integrate the spherical coordinates system.

1.3 The state-of-the-art in OBCs for regional oceanic

models

There are two main approaches to regional Oceanic modeling and both come
from the need of providing external information to the models, given the fact
that the mathematical model is intrinsically a boundary value problem. The
approaches are either the one-way nesting or the two-way nesting. In the
one-way nesting (or downscaling approach) there are, typically, a large-scale
domain and a smaller scale domain, usually with finer resolution, embedded
in the first. The large-scale model runs independently of the smaller-scale
model. The small-scale model, however, extracts information from the large-
scale model to provide adequate values at its open boundaries and even to
the interior of its domain. In the two-way nesting however, there are two
regional models patched in one another and each providing to each other
boundary conditions. In the occurence that one model has a larger-scale
with a coarser resolution, and that the finer-scale model is patched within
the large-scale model, then one can talk of downscaling and upscaling. In
this case, the large-scale model acts as a reference solution to the smaller-
scale model (downscaling), and the large-scale model also needs information
at its boundaries coming from the small-scale model. This work will fo-
cus exclusively on the downscaling approach. For the two-way nesting, the
reader is referred to Debreu et al. (2005) and Cailleau et al. (2008). The best
known recent review on OBCs for regional ocean models is from Blayo and
Debreu (2005) and is somewhat further discussed in Chassignet and Verron
(2006, Ch. 5). Basically most authors separate the boundary conditions
in two types: the radiative and the relaxing type conditions. The former
type consists in letting perturbations generated within the local model to
leave seamlessly and the latter type consists in transmitting information
from an exterior model into the local model. Both ypes consist in han-
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dling a linearized form of the equations. More complex non-linear forms of
the equations of motion is also considered by Blayo and Debreu (2005) and
known as characteristics methods, but restricts itself to hyperbolic type of
PDEs. Boundary conditions following the exact equations of motion were
proposed by Engquist and Majda (1977), but are computationally costly to
implement.

1.3.1 Relaxing type conditions

The Dirichelet condition (clamped) can be regarded as the simplest form of
active boundary condition where the field, Φ, is connected at the boundary
to a reference solution, Φext,

Φ = Φext.

Blayo and Debreu (2005) generalizes the concept with the linear boundary
operator B, and a general class of simple active boundary condition follow
the relation

B Φ = B Φext, (1.1)

where the particular case of the clamped condition considers B = id. In fact,
Blayo and Debreu (2005) goes further arguing that equation 1.1 must be
ensured by any OBC scheme in order to be consistent. A typical relaxation
(damping or nudging) scheme would be of the type

∂Φ

∂t
= −Φ− Φext

Tf
,

where Tf is a relaxation time period corresponding to the time scale of the
incoming external information entering the model. This relaxation scheme
is often combined with Sommerfeld (1949) type radiation schemes, as pro-
posed by Blumberg and Kantha (1985). However, Blayo and Debreu (2005)
recommend to enforce the consistency criterion in equation 1.1 and propose
alternatively a scheme of the genre of

∂Φ− Φext

∂t
= −Φ− Φext

Tf
. (1.2)

A more progressive relaxation scheme, known as a flow relaxation scheme
(FRS) originally introduced by Davies (1976), then later adapted by Mar-
tinsen and Engedahl (1987). It uses a layer of cells near the boundary, called
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the sponge layer, and in this sponge layer the solution, Φ, is relaxed to an
external solution at each time step by

(1− α) Φ + αΦ,

where α is a relaxation coefficient varying between 0 (at the limit between
the sponge layer and the inner domain) and 1 (at the limit between the open
boundary (OB) and the sponge layer). The sponge layer also contains an
artificially increased viscosity designed to damp out any inwards reflection
that occurs near the boundary. Martinsen and Engedahl (1987) adapted
the above scheme, to something more similar to equation 1.2, and varied the
relaxation time coefficient, Tf . Tf is very large (towards infinity) in the inner
domain and at the edge in the sponge layer limit with the inner domain. Tf
decreases gradually in the sponge layer towards the OB. Comparative studies
seem to indicate that the Martinsen and Engedahl (1987) type schemes
perform quite well (Palma and Matano, 1998; Nycander and Doos, 2003).

Finally, the perfectly matched layer technique (PML), originally in-
troduced by Berenger (1994) for electromagnetic waves, is an alternative
method to sponge layered relaxation type schemes. Blayo and Debreu (2005)
acknowledges the fact that it should be implemented for the primitive Ocean
equations and duely tested. Tam et al. (1998); Hu (2001, 2008) implemented
a PML OB scheme in the Euler equations and in the shallow waters equation.
Lavelle and Thacker (2008) performs an implementation derivated from the
PML that he calls pretty good sponge. He then tests it for an equatorial
soliton wave and for a geostrophical eddy. The pretty good sponge seems to
perform better than typical relaxation schemes (Martinsen and Engedahl,
1987; Marchesiello et al., 2001).

1.3.2 Radiative type conditions

Radiative type conditions are passive boundary conditions by design. They
are meant to let information get out of the model. Nevertheless, they can be
accomodated within an active boundary scheme. According to Blayo and
Debreu (2005), there are radiative type conditions such as the ones defined
by Sommerfeld (1949), where an apriori knowledge of the phase wave celerity
is required,

∂Φ

∂t
+ c · n ∂Φ

∂n
= 0 (1.3)

where c is the phase celerity vector of the dependent variable Φ, n is the out-
wards normal vector to the boundary and ∂

∂n is the normal derivative to the
boundary. Though the Neumann boundary condition (null-gradient) doesn’t
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fit the radiative type, it does enter the class of passive boundary condition.
The radiative type condition is also a passive boundary condition designed
to radiate out of the model non-dispersive mono-phasic wave-like perturba-
tions. Several approaches are considered when calculating the mono-phase
wave speed and incidence relative to the OB. Either the classical shallow
approximation wave celerity is considered

c =
√
g H

where H is the domain depth and g is the local acceleration, either an
Orlanski (1976) type celerity is considered

c(x t) = −
∂Φ
∂t
∂Φ
∂n

,

which obeys the following equation

∂

(
∂Φ
∂t
∂Φ
∂n

)

∂t
+

∆x

∆t

∂

(
∂Φ
∂t
∂Φ
∂n

)

∂x
. (1.4)

For the latter type, the Orlanski (1976) radiation condition is shown in
Blayo and Debreu (2005) to be consistent with equation 1.4 for mono-phasic
waves. Wave groups with different celerities will not respond adequately to
such schemes and reflect partially at the boundaries. In fact, most OBC used
in regional Ocean models consider a combination of a radiative type scheme
with a relaxation type scheme, depending if the sign of c is inward (relax-
ation) or outward (radiation) such as proposed by Blumberg and Kantha
(1985). Nevertheless, for realistic complex baroclinic flows, Treguier et al.
(2001) suggests that most of the effectiveness of the Blumberg and Kantha
(1985) scheme comes from the relaxation type part of it.

Finally, Flather (1976) proposed a radiative/relaxing type of condition

u−
√

g

H
η = uext −

√
g

H
ηext (1.5)

which appears to yield best performances in comparative studies of OBC
such as Palma and Matano (1998); Marchesiello et al. (2001); Nycander and
Doos (2003). The Flather type condition is deduced from the Sommerfeld
radiation condition applied to water elevation

∂η

∂t
+
√
g H

∂η

∂x
= 0,
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and the 1D continuity equation,

∂η

∂t
+
∂H u

∂x
= 0,

by subtracting one another and considering that H is a constant. Blayo and
Debreu (2005) suggests that the apparent better performance of the Flather
radiation condition is due, in fact, to the use of the clamped condition,

w = wext,

on the incoming characteristic, w = u−
√

g
H η, of the 2D linearized inviscid

shallow waters equation.
Marsaleix et al. (2009) proposes a polarization relation method (PRM)

to radiate internal gravity waves. He further discusses the non-rotating
case as well as the rotating case. The radiation of internal gravity are an
important aspect of regional Ocean modeling. Mostly every other radia-
tion condition only addresses the external gravity waves, thus the PRM
technique is an important progress towards radiation techniques capable of
propagating outwards of the model the multi-modal propagating waves.

1.3.3 Model adapted conditions

So far, linearized versions of the model equations were considered at the
boundaries to prescribe OBCs, but Engquist and Majda (1977) proposed
OBCs depending on the full model equations. Nevertheless, Blayo and De-
breu (2005) considers that prescribing OBCs with the full model equations
is unpractical and that some approximations need to be made. There are
various types of model adapted conditions found independently but all are
based on the transformed characteristic equations of the original equations
of motion. There are the absorbing radiation conditions proposed by En-
gquist and Majda (1977); Nycander and Doos (2003) and the characteristic
waves amplitudes methods proposed by Roed and Cooper (1987) for the lin-
earized inviscid shallow water equations. Blayo and Debreu (2005) propose
a characteristics method for the shallow water equations.

1.3.4 Overall appreciation

Blayo and Debreu (2005) makes the fundamental point that all the most suc-
cessful OBC (Flather, 1976; Nycander and Doos, 2003) follow the criteria
of considering incoming characteristics variables and consistently verifying
equation 1.1. The clamped Dirichelet condition is not recommended since
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its outward propagation does not rely on the interior solution. The radiation
methods are discarded as well since they only radiate outgoing single phase
waves and don’t perform well in complex flows. For instance, internal waves
are consistently reflected at the OB. Nevertheless, Marsaleix et al. (2009)
addresses this issue and proposes the PRM to radiate internal gravity waves.
Relaxation schemes with sponge layers are computationally more costly but
they yield quite good results in complex flows. Lavelle and Thacker (2008)
proposes a PML implementation for shallow water equations that he rec-
ommends as being the best sponge layered type scheme, so far. Herzfeld
(2009) showed recently that OBC schemes can be implemented in several
ways and can yield quite different results. Herzfeld (2009) performed two
types of implementation to the Sommerfeld radiation scheme and to the
Flather scheme. He then exposed the differences of these implementations
from a physical point of view. The final idea of the state-of-the-art con-
cerning OBC is that it remains an open subject prone to modifications and
improvements.

1.4 The planning

The idea is to assess if the state-of-the-art in OBC for regional Ocean models
in order to plan and steer the future development of numerical OB schemes
for MOHID, as a model capable of forecasting the Ocean circulation at the
regional level.

To do that, a part of the thesis is devoted to validate MOHID in typi-
cal Ocean processes, namely that of the Ocean vertical turbulence and the
generation of barotropic and baroclinic instabilities. The Ocean vertical
turbulence process validation envolved the development of a vertical unidi-
mensional hydrodynamical model in MOHID, which reduced dramatically
the computational cost, and it allowed to correct an important bug in the
Brunt-Vaisalla frequency calculation which would yield a significant excess
of stratification.

The barotropic and baroclinic instabilities generated by MOHID were
tested with the schematic test-case of the freshwater cylinder (Tartinville
et al., 1998).

An idealized numerical experiment to test both passive and active bound-
ary conditions was devised as a two-level, one-way nesting experiment, much
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like the ones found in Marsaleix et al. (2009); Herzfeld (2009); Lavelle and
Thacker (2008). The concept was generalized to both schematic test-cases
and realistic regional Ocean applications.

For the schematic test-case, a gaussian water elevation is released and
the subsequent wave front is propagated outwards of the domain. This ex-
periment is designed to test passive boundary conditions. To allow rapid
prototyping of boundary conditions, a shallow water equations numerical
model was developped in Matlab, using a leapfrog, face centred second or-
der numerical scheme. The gravitational wave radiation condition was de-
veloped in a NVOE Herzfeld (2009) stencil, as well as the Flather radiation
condition. The application of the Okubo-Weiss scalar to the flow near the
open-boundaries will yield insight on the effect of the boundary condition,
particularly when compared with the unbounded reference solution.

Another schematic test-case considering a coastal upwelling event is con-
sidered to pass to the three-dimensional case and is yet to be implemented
with MOHID.

Two regional Ocean applications were implemented with MOHID, both
with realistic forcing, in Western Iberia (Riflet et al., 2007a) and in the bay
of Biscay. A downscaling methodology is presented based on the works of
Leitão et al. (2005). The scalar of Okubo-Weiss is yet to be implemented,
in offline mode.

Due to computational costs, only the schematic test-cases can be tested
with several OBC.
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Chapter 2

Fundamentals in geo-fluid

physics and coastal physical

processes

2.1 Mathematical fundaments

The fundamental mathematical tools required to properly expose and study
the motion of fluids, or the physics of any continuum medium, were de-
veloped by Newton and Leibniz, independently, roughly during the late
seventeenth century. In particular, they developed the infinitesimal cal-
culus, which allowed them to define the instant velocity, and acceleration,
of objects. The mean velocity was intuitively taken as the ratio between the
length traveled and the time taken to travel that length, however the instant
velocity required infinitesimal lengths, δx, and infinitesimal time periods, δt.
Thus the need to define instant velocities, and accelerations, led to the for-
mal concept of derivative, known today as the limit when δt tends to 0 of
the ratio of δx and δt. In fact, the most powerful concepts from infinites-
imal calculus were revised and more rigorous mathematical methods were
enforced during the nineteenth century, under the Weierstrass school, which
defined real analysis or real standard calculus, and which used the notion of
limit rather than that of infinitesimal. The infinitesimal techniques, heuris-
tically used by Leibniz, were formalized much later, during the 1960’s, by
Abraham Robinson in his non-standard analysis treaty, where he introduced
the concept of hyperreals(Robinson, 1974). Basically, the concepts devised
by both Newton and Leibniz lie in the derivative, the primitive and the
integral which are adequate to study rates of change in continuum spaces.
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Particularly important are the Fundamental Theorem of Calculus and the
Theorem of Leibniz which will be developed in the following section 2.1.1
and 2.1.2. After real analysis, or one-dimensional analysis, came naturally
the calculus in R

n, which was suitable to study functions in orthonormal
reference frames. However, when came the issue to tackle analysis of func-
tions on non-cartesian reference frames, with more irregular geometries, like
the sphere, the torus, etc, came also the need to find continuous transforma-
tion functions that would map mathematical objects from one frame onto
another. This challenge was heavy-lifted by Riemann, amongst others, and
modern geometry and differential geometry was founded which proved to
be a fundamental tool in Physics, in domains such as General Relativity.
Differential geometry is important as it introduces the concept of form and
exterior derivative, which is an interesting tool that generalizes important
theorems used in tensor calculus and other engineering fields such as solid
mechanics and fluid mechanics.

2.1.1 The Fundamental Theorem of Calculus

The most important and recurrent theorem to develop all the fluid dynamics
equations, in the scope of this text, is the Fundamental Theorem of Calculus
which, in a common modern differential geometry language, states as

∫

M
dω =

∮

∂M
ω (2.1)

where ω is a form, M is an oriented differentiable manifold, ∂M is its
outward oriented boundary and d is the exterior derivative. This theorem
has an equivalent classic counterpart in real Calculus,

∫ b

a
f(x)dx = F (b)− F (a),

where f is any real function, F is its primitive, and a, b are any bounded
reals. Furthermore, the Fundamental Theorem of Calculus is also perfectly
equivalent, in tensor calculus, to what we’ll call herein, for simplicity, the
curl theorem, the divergence theorem and the gradient theorem, respectively
expressed as ∫

M
∇× F =

∮

∂M
F, (2.2)

∫

M
∇ · F =

∮

∂M
F · n (2.3)
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and ∫

M
∇F =

∮

∂M
Fn, (2.4)

where is M is any real n-dimensional finite volume, F is any differentiable
vector field and n is the outward normal vector on the finite volume surface.
It can be easily seen, though it will not be properly demonstrated here, that
they’re equivalent expressions of equation 2.1 by noting that

∇× F =
[
?
(
dF[

)]]
,

∇ · F = ?d
(
?F[
)
,

∇F = (dF)] ,

where ? is the Hodge star operator and ] and [ are the musical isomorphisms.
The Hodge star operator may be seen as the natural extension of the cross
product to arbitrary dimensional spaces while the latter couple of operators
raise and lower the index in tensors (and are analogue with the flat and sharp
symbols that raise and lower one semitone in music). Equations 2.2-2.3 are
classicaly known as Kelvin-Stokes and Gauss-Ostrogradsky theorems, named
after their respective founders and promoters. Equations 2.2-2.4 will be
recurrently used throughout this text and they evidence that the integrated
inner motion of any continuum medium can be described by accounting
solely the motion at the boundary. On the other hand, these equations,
by construction, are valid to any finite volume, or control volume, that is
embedded in a continuum medium and to any property of this continuum
medium. However, of little use they would be if the rates of change of the
continuum medium properties weren’t computable. This insinuates the fact
that the derivatives applied to properties integrated in a control volume
must be summoned, and it also implies that a sound method to swap the
derivative with the volume or surface integral is badly needed. To our aid
comes Leibniz’s Integral Rule.

2.1.2 Leibniz integration rule

Probably the most important and useful theorem of real Calculus after the
Fundamental Theorem of Calculus is Leibniz’s integration rule, which states
how the derivative is applied to an integral property in a continuum medium.
It is best known in Calculus textbooks as

d

dt

∫ b

a
f(x, t) dx =

∫ b

a

df

dt
(x, t) dx, (2.5)
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where d
dt is the time derivative, a and b are the limits of an open interval

of R and f is a real integrable and differentiable function relative to coordi-
nate points (x, t) ∈ R

2. Switching the derivative with the integral is quite
straightforward to prove, as seen in Zorich (2004, p. 409). An extended ver-
sion of the Leibniz’s integration rule where the boundary limits are evolving
with the coordinate of the derivative is (Zorich, 2004, p. 411)

d

dt

∣∣∣∣
t0

∫ b(t)

a(t)
f(x(t), t) dx =

∫ b(t0)

a(t0)

∂f

∂t
(x(t0), t) dx

+
db

dt

∣∣∣∣
t0

f(b(t0), t0)−
da

dt

∣∣∣∣
t0

f(a(t0), t0), (2.6)

where a and b are any two real functions of t, and t0 is the time instant
when the derivative is taken. Notice how the time derivative of the inter-
val’s boundary points is required in order to switch the integral with the
derivative operator. The difference with equation 2.5 is that, when dealing
with moving boundaries, the Reynolds transport theorem concept was im-
plicitly used (and invoked or proved during the proof). In fact, one aspect of
the author’s displeasure concerning today’s Newton-Leibniz modern contin-
uum mechanics approach is that too often the extended version of Leibniz’s
integration rule in equation 2.6 is presented without prior introduction to
the also important and insightful Reynolds transport theorem. Thus, in the
next section 2.1.3, the Reynolds transport theorem and the generalized multi-
dimensional Leibniz’s integration rule will be described. Needless to say that
the former, in conjunction with equation 2.5, will be used to prove the latter.
However, it is straigtforward to express the equivalent of equation 2.5 to a
multi-dimensional volume V ⊂ R

n where n ∈ N:

d

dt

∫

V
f(p, t) dV =

∫

V

df

dt
(p, t) dV,

where p is any point in V .

2.1.3 Reynold’s transport theorem: a deeper insight

The Reynolds transport theorem, in physics, simply states that the rate of
change in time of some quantity within a control volume bounded by a
control surface is equal to what comes in (through the control surface) mi-
nus what goes out (through the control surface) summed to what is cre-
ated (within the control volume) minus what is destroyed (within the con-
trol volume). This practical and intuitive definition describes exactly what
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2.1. MATHEMATICAL FUNDAMENTS

equation 2.6 represents for one dimension: a balance between what changes
within the control volume in the first term of the right hand side (RHS)
and what flows through the control volume boundary in the last term of the
RHS. However, traditionally, the control volume used is always represented
fixed at a given time instant, such as seen in equation 2.7.

d

dt

∣∣∣∣
t0

∫

V (t)
f(p(t), t) dV =

∫

V (t0)

∂f(p(t0), t)

∂t

∣∣∣∣
t0

dV

+

∮

∂V (t0)
f(p(t0), t0)v · n dS, (2.7)

where V ∈ R
3 is a moving control volume, f is any real function, ∂V is

its control surface, v is the velocity of the control surface relative to the
coordinate reference frame and n is the outward normal to the control sur-
face. Although it is convenient and required to fix the control volume in
time when one wishes to properly switch the derivative with the integral
sign, i.e. apply the classic Leibniz integration rule in equation 2.5, it is
not mandatory; particularly if one wishes to study only what comes in and
what goes out, and is not particularly interested in calculating explicitly
what is created and what is destroyed within the control volume. This is a
strong enough reason to define a deeper transport theorem. In this work it
is believed that this aspect is key to study finite volume modeling of Navier-
Stokes equations (or similar equations of motions for fluids) using a mesh
with time evolving control volumes, (but not necessarily with lagrangian
volumes, in the classical sense,) while managing to prescribe constraints
such as local mass or volume convervation, vorticity conservation and so on.
In fact, the first reported application that was found in the literature was
applied to a one-dimensional two-phase flow by Collado (2007) where the
author suggested a new particle control volume fixed relative to one of the
fluid phases as to adequately describe mass conservation and continuity. Of
course, several numerical models already implemented such time-evolving
meshes (Bleck, 2002; Martins et al., 1998) but they don’t explicitly consider
the mind-framework that this work emphasizes. Furthermore, at the time
of Leibniz, or even Reynolds, when these theorems were first discovered, nu-
merical modeling (and modern geometry) was still a faraway fantasy, thus
it is only natural that their contemporary saw no need in developing any
further equation 2.6.

In this novel framework, several control volumes, VA, VB , VC , ..., VZ , are
considered evolving continuously in time through a cartesian referenced
three-dimensional space that happen to coincide (exactly) in shape and vol-
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Figure 2.1: Representation of the control volumes VA, VB and VC near time
instant t = t0 and their relative deformation rate of change, represented by
the vector fields vA|B and vB|C over their control surfaces. On the left panel
are represented volumes VB and VA at time instants t = t0 and t = t0 + δt
in a reference frame fixed in volume VB . The deformation rate of change
of VA relative to VB is represented by the vector field vA|B at time instant
t = t0. On the right panel are represented volumes VB and VC at time
instants t = t0 and t = t0 − δt in a reference frame fixed in volume VB. The
deformation rate of change of VB relative to VC is represented by the vector
field vB|C at time instant t = t0 − δt.

ume with a fixed volume V at one time instant t = t0. This constrasts with
the classical framework where only one moving lagrangian volume and one
fixed control volume were considered. For the sake of rigor, let us consider
that there always exists a diffeomorphism(Zorich, 2004, p. 142) between
any two control volumes VX and VY . Let vX|Y (t) be the relative deforma-
tion rate of change with time of any two control volumes VX(t) and VY (t)
near instant t = t0. vX|Y is basically the relative velocity between the two
volumes VX and VY and is best represented by a vector field evolving with
time as seen in figure 2.1 near time instant t = t0. Thus, the real integrable
and differentiable function f , whose domain is R3×R and whose coordinate
points are of type (p, t), is well determined, within each moving volume,
and its rate of change in time within volume VX is related to the rate of
change in time within volume VY around instant t = t0 by means of its
relative velocity. Hence, the new transport theorem yields

d

dt

∣∣∣∣
t0

∫

VA(t)
fA dV =

d

dt

∣∣∣∣
t0

∫

VB(t)
fB dV +

∮

∂VB(t0)
fB vA|B · nB dS, (2.8)
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2.1. MATHEMATICAL FUNDAMENTS

where fA is the function f restricted to the moving domain VA, i.e. fA ≡
f |VA ≡ f (pA(t), t), and for every point in VA there is a path pA in R

3

parametrized by t such that ∀t ∈ R, pA(t) ∈ VA(t). nB is the outward
oriented normal on the surface boundary of VB . It follows naturally that
the relative velocity between VA and VB is defined, by construction, as

vA|B ≡ d

dt
(pA − pB) . (2.9)

Furthermore the relative velocity for any two diffeomorphic volumes, possess
the distinct properties of anti-symmetry and of chaining with any third
diffeomorphic volume:

1. vX|Y = −vY |X ,

2. vX|Y + vY |Z = vX|Z .

The proof for anti-symmetry is straightforward from equation 2.9:

vX|Y =
d

dt
(pX − pY )

= − d

dt
(pY − pX)

= −vY |X . �

Idem for chaining:

vX|Y + vY |Z =
d

dt
(pX − pY ) +

d

dt
(pY − pZ)

=
dpX
dt

− dpY
dt

+
dpY
dt

− dpZ
dt

=
d

dt
(pX − pZ)

= vX|Z . �

This approach, as seen in equation 2.8, rather than aiming at switching
the derivative with the integral, lies in using generic moving diffeomorphic
volumes that happen to coincide at a given point in space and time, thus
making equation 2.8 an equation of a more general class than the classic
Reynolds transport theorem while still carrying the concept of transporta-
tion: the rate of change of a property within a volume is equal to the rate of
change of the property within another overlapping volume, temporarily coin-
cident with the first, summed to the relative flow of the property through the
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surface of the overlapping volume. Though the chaining property of veloc-
ity in equation 2.9 was explicitly deduced in Collado (2007), Collado (2007)
used it simultaneously with the Leibniz integration rule, thus shadowing its
intrinsic interest. In fact, the study of two-phase and multi-phase flows of-
ten consider such relative velocities between each phase of the flow(Gray,
2002; Hassanizadeh and Gray, 1990). The other insightful aspect is that
the velocity field defined by equation 2.9 may be custom-built to meet some
specific requirements of the control volumes, such as, in geophysical fluids,
to follow isopycnals, isentropic or geopotential lines. In opposition, the tra-
ditional physics approach was to consider the velocity of the boundaries as
the velocity of the fluid relative to the reference frame. However, this is
not a requirement when, for instance, the motion of isopycnals is consid-
ered to determine the motion of the finite volume boundaries, within the
context of numerical models. An insightful and interesting applied exercise
consists in deducing the two-dimensional barotropic shallow water equations
of motion, seen in section 4.2, where the top surface of the control volumes
is free moving. The classical approach consists in integrating the Navier-
Stokes equations in the required control volumes, whereas the approach in
this exercise will spearhead directly the correct equations of motion, thus
completely bypassing the Navier-Stokes equations.

In fact, the Reynolds Transport Theorem contains powerful symmetries
that derive from equations 2.8 and 2.9. Exposing them more clearly is
evidencing the inherent algebra of the Reynolds Transport Theorem and, by
doing so, a simpler notation is introduced:

Definition 1. Let us define the flow of f through a volume adopting the
following square bracket notation:

[A, B]f ≡
∮

∂VB

fB vA|B · nB dS,

which, invoking the divergence theorem, is equivalent to

[A, B]f ≡
∫

VB

∇ ·
(
fB vA|B

)
dV.

Thus, definition 1 creates an operator that acts over any real field f that
also inherits anti-simmetry and chaining properties from equation 2.9:

Property 1. ∀f, ∀VA, VB , the square bracket operator is anti-symmetric

[A, B] = − [B, A] .
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Property 2. ∀f, ∀VA, VB , VC , the square bracket operator is chainable

[A, B] + [B, C] = [A, C] .

Proof. The proof consists in noting that at instant t0, VA = VB = VC , so that
we have ∂VA = ∂VB = ∂VC , fA = fB = fC and nA = nB = nC . Hence, by
using the anti-symmetric and chaining qualities of vX|Y , the square bracket
anti-symmetric and chaining properties are respectively proved.

1.
∮
∂VB(t0)

fB vA|B · nB dS = −
∮
∂VA(t0)

fA vB|A · nA dS,

2.
∮
∂VB(t0)

fB vA|B · nB dS +
∮
∂VC(t0)

fC vB|C · nC dS
=
∮
∂VC(t0)

fC
(
vA|B + vB|C

)
· nC dS

=
∮
∂VC(t0)

fC vA|C · nC dS.

Property 3. ∀f , ∀VA ,
[A, A] = 0.

Proof. It suffices to remark that vA|A = 0, ∀VA . A more conventional proof
would invoke the anti-symmetric property of the square bracket:

[A, A] = − [A, A]

if and only if, ∀VA
[A, A] = 0.

Lemma 1. ∀f ,
[A, B]f = 0

if and only if

VB = � or VA = VB .

Proof. If VA = VB, then, according to property 3, [A, B] = [A, A] = 0.
If ∀f , [A, B]f = 0 then ∀f ,

∮
∂VB

f vA|B · n dS = 0 if and only if VB = �
or vA|B = 0. vA|B = 0 ⇔ d

dtpA = d
dtpB ⇔ pA = pB + C. At t = t0 we

have VA(t0) = VB(t0), thus pA(t0) = pB(t0) if and only if ∀t, C = 0. Hence
∀t, pA = pB and, thus, VA = VB .
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Definition 2. Let us define the RHS of equation 2.8 using the bra-ket no-
tation:

< A | f |B >t0 ≡ d

dt

∣∣∣∣
t0

∫

VB(t)
fB dV +

∮

∂VB(t0)
fB vA|B · nB dS

=
d

dt

∣∣∣∣
t0

∫

VB(t)
fB dV + [A, B]f(t0) .

Property 4. It immediately follows that, ∀f ,

< A | f |A >t0=
d

dt

∣∣∣∣
t0

∫

VA(t)
fA dV.

Proof. It suffices to remark that vA|A = 0, ∀VA.

Property 5. ∀f , ∀VB coincident at one time instant t0 and diffeomorphic
to VA, the equivalent of the Reynolds transport theorem in equation 2.8 in
the bracket notation is

< A | f |A >t0=< A | f |B >t0 ,

or, stated alternatively,

< A | f |A >t0=< B | f |B >t0 + [A, B]f(t0) .

Proof. From property 4,

< A | f |A >t0=
d

dt

∣∣∣∣
t0

∫

VA(t)
fA dV,

from property 2,

< A | f |B >t0≡
d

dt

∣∣∣∣
t0

∫

VB(t)
fB dV +

∮

∂VB(t0)
fB vA|B · nB dS,

from equation 2.8

d

dt

∣∣∣∣
t0

∫

VA(t)
fA dV =

d

dt

∣∣∣∣
t0

∫

VB(t)
fB dV +

∮

∂VB(t0)
fB vA|B · nB dS,

hence
< A | f |A >t0=< A | f |B >t0 ,

or
< A | f |A >t0=< B | f |B >t0 + [A, B]f(t0) .
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The above couple of definitions and their following five properties are
enough to prove any other property using purely the bracket notation alge-
bra.

Property 6. ∀f , ∀VB coincident at one time instant t0 and diffeomorphic to
VA, the square bracket notation is none other than a commutator operator,

[A, B]f(t0) = < A | f |B >t0 − < B | f |A >t0

= < A | f |A >t0 − < B | f |B >t0 .

Proof.

< A | f |A >t0 − < B | f |B >t0

= < A | f |B >t0 − < B | f |A >t0 ,

from property 4, and

< A | f |B >t0 − < B | f |A >t0

= < A | f |B >t0 − < B | f |B >t0

= < B | f |B >t0 + [A, B]f(t0)− < B | f |B >t0

= [A, B]f(t0) ,

using properties 4 and 5.

Property 7. In the special case of f = 1, by defining < A |A >≡<
A | 1 |A > ∀VA, then ∀t

< A |A >=
dVA
dt

.

Proof.

∀t, < A |A > ≡ < A | 1 |A >

=
d

dt

∫

VA

1 dV

=
d

dt
VA,

using definition 2.
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Property 8. A special case of property 6 consists in imposing f as the
identity:

[A, B]1 = < A |B > − < B |A >

= < A |A > − < B |B >

Proof. The proof is self-evident, it suffices to replace f with 1 in property 6.

Property 8, stated back in integral notation, yields the following relevant
results:

dVA − VB
dt

∣∣∣∣
t=t0

=

∫

VB(t0)
∇ · vA|B dV (2.10)

Property 9. V0 is a volume fixed relative to the reference frame if, and only
if,

< 0 | 0 >= 0.

Proof. If V0 is a volume fixed relative to the reference frame, then

< 0 | 0 > ≡ < 0 | 1 | 0 >

=
d

dt

(∫

V0

1 dV

)

=
dV0
dt

= 0.

If < 0 | 0 >= 0 then, by definition, d V0dt = 0 and d V0
dt = 0 if, and only if, V0

is fixed in time relative to the reference frame.

Property 10. ∀f the Leibniz integration rule, in bracket notation, states,

< 0 | f | 0 >=
∫

V

∂f

∂t
dV,

where the derivative is annotated partial derivative, d
dt ≡ ∂

∂t , whenever the
derivative is applied to an integral whose domain of integration is fixed in
time. The Leibniz Integration Rule allows to switch the derivative from the
outside to the inside of the integral.
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2.1. MATHEMATICAL FUNDAMENTS

Proof.

< 0 | f | 0 >

=
d

dt

(∫

V
f dV

)

=

∫

V

∂f

∂t
dV,

using property 4.

Property 11. ∀f , ∀VA diffeomorphic and coincident at instant t0 with V0,
the classic Reynolds Transport Theorem states, in bracket notation,

< A | f |A >t0=< 0 | f | 0 >t0 + [A, 0]f(t0) .

Proof. By using property 5 and property 10 and substituting in

< A | f |A >t0=< 0 | f | 0 >t0 + [A, 0]f(t0) ,

yields

d

dt

∣∣∣∣
t0

∫

VA(t)
f(p(t), t) dV =

∫

V0

∂f(p(t0), t)

∂t

∣∣∣∣
t0

dV

+

∮

∂V0

f(p(t0), t0)vA|0 · n dS,

which is equation 2.7.

The bracket notation applied to the Reynolds Transport Theorem, along
with its properties, becomes really interesting when powerful properties get
easily proved. For example, the following lemma is very important to con-
struct the constitutive relations for geometry in a continuum medium:

Lemma 2. ∀VA coincident at instant t0 and diffeomorphic to a control vol-
ume, V0, fixed relative to the reference frame,

< A |A >t0= [A, 0]1(t0).

Proof.

< A |A >t0

= < 0 | 0 >t0 +[A, 0]1(t0)

= [A, 0]1(t0),
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using properties 5 and 3, The lemma 2 translates, back into integral
notation by using property 7 and definition 1, as

d

dt

∣∣∣∣
t0

VA(t) =

∫

V0

∇ · vA|0 dV. (2.11)

∀V0 ∈ R
3, ∀VA diffeomorphic and coincident at instant t0 with V0, which is

equivalent to, for short, ∀VA that moves in space through time.
A special case, within the scope of the continuum medium, consists in

considering only diffeomorphic control volumes VA and VB and scalar fields
f that are well-behaved. In particular, if the motion of the control volumes
and the scalar field is smooth enough such that ∀p, t in the domain of f
there always exists an infinitesimal neighbourhood vA, vB contained within
the domain of f whose volume is small enough such that

1. f and the spatial gradient of f are similar to their respective average
in vA and vB, f and ∇f ,

2. vA|B and the spatial gradient of vA|B are similar to their respective

average in vA and vB, vA|B and ∇vA|B,

then the open sets vA and vB , which form a neighbourhood of p, are defined
as specific volumes. By ”similar” it is meant that, ∀ p ∈ v

f − f

f
� 1, (2.12)

whereas, by ”average”, it is meant that

fa ≡
∫
vA
f dV

∫
vA

dV
, (2.13)

where the superscript notation indicates the averaging specific volume. Of
course, the bracket notation may be extended to contemplate and to study
the properties of specific volumes. It may seem paradoxal to integrate a
property within a specific volume, and it may actually be conceptually wrong
as well, since a specific volume is an infinitesimal volume. Thus, the author
itself is doubtful of the consistency and meaning of equation 2.13. Perhaps
a more consistent way is simply to accept infinitesimals as a valid and solid
notion, well-posed and proved from Non-standard analysis (Robinson, 1974).
In that case we would have

f − f = 0
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and
fa = f(pa),

where pa is the point whose neighbourhood is vA.

Definition 3. ∀f well behaved, ∀p in the domain of f , ∀vA forming a
neighbourhood of p and contained in the domain of f , the bracket-notation
yields

< a | f | a >≡ d

dt

(
fa vA

)
,

where the lower-case letter in the brackets emphasis the fact that the control
volume is a specific volume. It is also noteworthy that the time derivative,
when applied to a physical property integrated in a specific volume that con-
tains the same mass particles (without taking into account molecular diffu-
sion), is often designated by mechanical engineers as the material derivative
and is usually annotated d

dt ≡ D
Dt .

Property 12. ∀f well behaved, ∀vA specific volume contained in the domain
of f ,

< a | f | a > =
D

Dt

(
fa vA

)

=
Dfa

Dt
vA + fa

DvA
Dt

,

and

< a | a >= dvA
dt

.

Proof.

< a | f | a > ≡ d

dt

∫

vA

f dV

=
D

Dt

(
fa
∫

vA

dV

)

=
D

Dt

(
fa vA

)

=
Dfa

Dt
vA + fa

DvA
Dt

,

and

< a | a > ≡ d

dt

∫

vA

1 dV

=
dvA
dt

.
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Property 13. ∀f well behaved, for all specific volume vB, for all specific
volume vA contained in the domain of f and diffeomorphic and coincident
with vB at instant t0,

[a, b]f = ∇ ·
(
f vA|B

)b
vB .

Proof.

[a, b]f =

∮

∂vB

f vA|B · n dS

=

∫

vB

∇ ·
(
f vA|B

)
dV

= ∇ ·
(
f vA|B

)b
vB .

For the above equation to hold true, it is required to note that the average
of a sum is the sum of the averages and that the average of a product is the
product of the averages.

Property 14. For all specific volume vB, for all specific volume vA diffeo-
morphic and coincident with vB at instant t0,

1

vB

D (vA − vB)

Dt
=
(
∇ · vA|B

)b
.

Proof. From property 6 we have

< a | a > − < b | b >= [a, b]1,

and by substitution into the integral notation (properties 12 and 13) we get

DvA
Dt

− DvB
Dt

=
(
∇ · vA|B

)b
vB ,

1

vB

D (vA − vB)

Dt
=

(
∇ · vA|B

)b
.

A particular case of property 14 arises when the specific volume vB is
held fixed in time,

1

v0

DvA
Dt

=
(
∇ · vA|0

)o
.
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Property 14 will also be helpful to extend the classical definition of the
material derivative, usually known as

D

Dt
≡ ∂

∂t
+ v · ∇,

in most textbooks.

Property 15. For all f well-behaved and defined in R
3 × R, the extended

Lagrangian derivative can be expressed as

Dfa

Dt
=
Df b

Dt
+
(
vA|B

)b · ∇f b,

or, equivalently, as

1

f b

D
(
fa − f b

)

Dt
=
(
vA|B

)b · ∇f
b

f b
.

Proof. From property 5 we have

< a | f | a > = < b | f | b > + [a, b]f ,

⇔ d

dt

∣∣∣∣
t0

∫

vA(t)
f dV =

d

dt

∣∣∣∣
t0

∫

vB(t)
f dV +

∫

vB(t0)
∇ ·
(
f vA|B

)
dV,

⇔ D
(
fa vA

)

Dt
=

D
(
f b vB

)

Dt
+∇ ·

(
f vA|B

)b
vB ,

⇔ Dfa

Dt
vA + fa

DvA
Dt

=
Df b

Dt
vB + f b

DvB
Dt

+
(
f ∇ · vA|B + vA|B · ∇f

)b
vB,

⇔ Dfa

Dt
+
fa

v0

DvA
Dt

=
Df b

Dt
+
f b

v0

DvB
Dt

+
(
f ∇ · vA|B

)b
+
(
vA|B · ∇f

)b
,

⇔ Dfa

Dt
=

Df b

Dt
− f o

v0

(
DvA
Dt

− DvB
Dt

)

+ f o
(
∇ · vA|B

)b
+
(
vA|B

)b · ∇f b,

⇔ Dfa

Dt
=

Df b

Dt
+
(
vA|B

)b · ∇f b

−f o
(

1

v0

D (vA − vB)

Dt
−
(
∇ · vA|B

)b
)
,

⇔ Dfa

Dt
=

Df b

Dt
+
(
vA|B

)b · ∇f b,
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using property 14. Note that the average of a product (or sum) is the
product (or sum) of the averages. It is also noteworthy that ∀vA, vB , fa(t0) =
f b(t0) = f o. On the other hand,

Dfa

Dt
=
Df b

Dt
+
(
vA|B

)b · ∇f b

⇔
D
(
fa − f b

)

Dt
=
(
vA|B

)b · ∇f b

⇔ 1

f b

D
(
fa − f b

)

Dt
=
(
vA|B

)b · ∇f
b

f b
.

In the particular case when vB = v0, i.e. when the specific volume is fixed
relative to the reference frame, property 15 becomes the classical and very
well known material derivative that appears in every textbook of continuum
mechanics (Kundu and Cohen, 2002; Gill, 1982):

Dfa

Dt
=
∂f o

∂t
+
(
vA|0

)o · ∇f o. (2.14)

Though it is only actually considered a material derivative if the specific
volume is a material volume that contains the same mass particles (ex-
empting microscopic particles exchanged by molecular diffusive processes).
Otherwise it should be re-named, for semantic purposes, moving derivative
or Lagrangian derivative, since the author who coined the term material
derivative doubtfully was considering generic moving specific volumes at all,
besides mass-following ones. Classically the material derivative is seen as a
bridge between the so-called eulerian and lagrangian reference of frame. In
this generalization, it is seen that there it is in fact a special case of trans-
formation of derivative between two different lagrangian reference frames.
This new formalism could be potentially interesting in helping calculating
schemes in numerical models using two moving reference frames, such as
one that follows mass and another that follows moving grid-cells, such as
the ones in the work of Martins et al. (1998) and Bleck (2002, 1978). In
practice, an equivalent of the extension of the material derivative with a
different notation is found in the earlier work of Hassanizadeh and Gray
(1990, p. 173) concerning multi-phase flows. However, despite the works
of Collado (2007); Hassanizadeh and Gray (1990) that try to import the
extension of the Reynolds transport theorem and the material derivative,
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respectively, a recent review in multi-phase flow (Balachandar and Eaton,
2010) doesn’t integrate these concepts.

This section provides a solid foundation, composed of concepts and of
mathematical tools, that will help to define in the next sections, with some
rigor, a continuum medium. In particular, equations 2.8 and 2.11 are of
paramount importance to build a formalism for the continuum medium.
The former is required to relate material -lagrangian- volumes with fixed
-eulerian- volumes. The latter is required to relate the fractional rate of
change of the specific volume (which is a lagrangian volume) with the di-
vergence of the velocity (i.e. with the divergence of the lagrangian volume’s
deformation rate of change).

2.2 Continuum medium

It is important to mind that matter, at a microscopic scale, is a rather
discontinuous soup of molecules, atoms and quanta. However, the natural
anthropologic scale is such that it usually deals with volumes of matter
considered rather large when compared to the characteristic lengths of scale
of the microscopical constituents, such as the inter-atomic radii or the mean
free path of particles in a gas. Thus only the averaged properties of the
microscopic constituents are actually measured by a very rich spectrum of
tools. Of course, particularly since the early twentieth century, today’s
modern tools allows us to measure and interact with matter at the smallest
scales, up to the scale of the nanometer (∼ 10−9 m) and of the picometer
(∼ 10−12 m), and certainly a new way to describe the physics of fluids and
solids will emerge from this past century of experimentation. However, this
work deals with continuum media in the classical sense, and the interest
lies in describing accurately the mechanics and behavior of fluids and solids
from a macroscopical standpoint, while keeping awareness of the inherent
limitations of such a description.

Hence, a continuum particle (a curious oxymoron), or macroscopic par-
ticle, or material particle, is a particle that contains a significant number,
N , of microscopic constituents,

N � 1,

within an infinitesimal volume, which is large enough to contain the N mi-
croscopic particles, but which is small enough in order to be unidentifiable
by the human eye nor by any pre-twentieth century measurement instru-
ment. This material particle possesses several properties, namely its specific
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volume, vs, its microscopic particle density, n ≡ N
vs
, its density, ρ, which is

equal to the microscopic particle density times the effective atomic mass,
M , ρ ≡ n ×M , its velocity divergence, ∇ · v, its curl, ∇ × v, etc. Note
that the velocity field is a field continuous in space and time that char-
acterizes the motion of the material particles and the deformations they
undergo (v ≡ dp

dt ). However the velocity field is assumed to be well-behaved
such that, for each material particle, the velocity divergence, the curl or the
velocity gradient is unique, such as is the density, or the specific volume.
Lavoisier’s principle applied to conservation of mass within a closed domain
is well accepted. But the continuity hypothesis goes a step further and
states that, for each material particle, the specific volume deforms smoothly
under the velocity field such that, locally in time, the particles are preserved
within the specific volume, in labels and in numbers, excepted for diffusive
processes.

2.2.1 The continuity equation

Being ms the specific mass, defined as the product of the density with the
specific volume, ms ≡ ρ vs, the continuity equation yields

Dms

Dt
= 0

⇔ Dρvs
Dt

= 0

⇔ Dρ

Dt
vs + ρ

Dvs
Dt

= 0

⇔ 1

ρ

Dρ

Dt
+

1

vs

Dvs
Dt

= 0

⇔ 1

ρ

Dρ

Dt
= − 1

vs

Dvs
Dt

.

By invoking property 14, the above equation yields:

1

ρ

Dρ

Dt
= −∇ · vs|0

⇔ Dρ

Dt
+ ρ∇ · vs|0 = 0. (2.15)
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Equation 2.15 is known as the lagrangian form of the continuity equation,
or

Dρ

Dt
+ ρ∇ · vs|0 = 0

⇔ ∂ρ

∂t
+ vs|0 · ∇ρ+ ρ∇ · vs|0 = 0

⇔ ∂ρ

∂t
+∇ ·

(
ρvs|0

)
= 0. (2.16)

Equation 2.16 is known as the convective form of the continuity equation and
holds as long as diffusive processes are ignored. It is more useful to represent
mass transport in finite volume numerical models. As far as the inclusion
of diffusive processes in the continuity equation, probably the work of the
eminent Brenner (2005a, 2004, 2005b, 2006) is well worth to be mentioned.
He introduces the concept of specific volume transportation, rather than
focusing on mass or density transportation.

2.2.2 The advection-diffusion equation

The material specific volume in equation 2.16, however, doesn’t take into
account any diffusive process. Diffusive processes are an evidence, maybe
not of Euler’s nor Leibniz’s contemporaries, but certainly of the present and
past century. Any finite-volume numerical and biological modeling textbook
will yield what the author calls the continuum mantra,

{Rate of change in time} = {Ingoing − Outgoing fluxes}
+ {Created − Destroyed} . (2.17)

which, besides making perfect sense and being a great principle for a con-
ceptual model, is often found in textbooks such as Chapra (1997). Its math-
ematical formulation, when applied to any continuum property P such as
density, temperature or salinity, under the action of an advective field, held
within any control volume VB and moving with any trajectory, would yield,
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for all instant t0:

d
∫
VB(t) P (p(t), t) dV

dt

∣∣∣∣∣
t0

= −
∮

∂VB(t0)
P vA|B · n dS

︸ ︷︷ ︸
advection fluxes

−
∮

∂VB(t0)
KP ∇P · n dS

︸ ︷︷ ︸
diffusive fluxes

+

∫

VB(t0)
Sc− Sk dV

︸ ︷︷ ︸
source and sink terms

, (2.18)

where vA|B is the advection velocity field relative to the VB control volume,
KP represents Fick’s law diffusion coefficient associated to property P and
Sc and Sk represent the source and sink terms respectively. The sign of
the internal product with the control volume surface normal, n, indicates
whether the fluxes go inward or outward. From property 5, stating in bracket
notation that

< A | f |A >t0=< B | f |B >t0 + [A, B]f(t0) ,

it is seen that there always exists a control volume VA, diffeomorphic to VB
by means of the vector field vA|B and coincident at time instant t0, such
that equation 2.18 may write:

d
∫
VA(t) P (p(t), t) dV

dt

∣∣∣∣∣
t0

= −
∮

∂VA(t0)
KP ∇P · n dS

︸ ︷︷ ︸
diffusive fluxes

+

∫

VA(t0)
Sc− Sk dV

︸ ︷︷ ︸
source and sink terms

.

This volume VA moves, expands and shrink, such that no flow other than the
diffusive, flows through its surface. It is not clear, however, if there exists
necessarily a control volume VC that would also ”neutralize” the diffusive
processes such that

d
∫
VC(t) P (p(t), t) dV

dt

∣∣∣∣∣
t0

=

∫

VC(t0)
Sc− Sk dV

︸ ︷︷ ︸
source and sink terms

.
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To prove it, it would be necessary to show the existence of such a control
volume, one that expands and evolves according to advection and diffusion,
and it would be necessary to prove the existence of a diffeomorphism be-
tween the original control volume and such special volume. No such special
control volume was found to be discussed prior in the literature. It is not
of particular interest in this thesis, though the author acknowledges that
if such diffeomorphism existed it certainly would prove more general than
the bracket notation formalism and should be considered in the scope of a
broader formalism of control volumes kinematics for continuum media.

However, when modeling, one often needs to consider the advection-
diffusion equation 2.18 with VB , a control volume with a moving surface
boundary, such as the water level surface in the shallow-water equations. An
interesting point is that equation 2.18 is in the integral form. To express it in
the differential form, though, and to make use of the Leibniz Integral Rule,
then a third control volume, V0, completely fixed relative to the reference
frame would be required,

< B |P |B >t0 + [A, B]P (t0)
= < 0 |P | 0 > + [B, 0]P (t0)

+ [A, B]P (t0)
,

So that equation 2.18 becomes

< 0 |P | 0 > + [A, B]P (t0)
+ [B, 0]P (t0)

= −
∮

∂VB(t0)
KP ∇P · n dS

︸ ︷︷ ︸
diffusive fluxes

+

∫

VB(t0)
Sc− Sk dV

︸ ︷︷ ︸
source and sink terms

,

⇔< 0 |P | 0 > + [A, 0]P (t0)
= −

∮

∂V0

KP ∇P · n dS
︸ ︷︷ ︸

diffusive fluxes

+

∫

V0

Sc− Sk dV

︸ ︷︷ ︸
source and sink terms

.

Re-writing the latter equation in its full explicit integral notation, one gets

∫

V0

(
∂P

∂t
+∇ ·

(
P vA|0

)
+∇ · (Kp∇P ) + Sc− Sk

)
dV = 0,
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which holds true for all property P , under any advective field vA|0, for all
control volume V0 ∈ R

3 if, and only if,

∂P

∂t
+∇ ·

(
P vA|0

)
+∇ · (Kp∇P ) + Sc− Sk = 0. (2.19)

Equation 2.19 is the classic differential advection-diffusion equation, seen in
a great many variety of textbooks such as Chapra (1997). If we consider the
advection field relative to reference frame vA|0, as the field that deforms,
by construction, the material specific volume whose material derivative is
noted D

Dt , then the material form of equation 2.19 yields:

DP a

Dt
+ P ∇ · vA|0 +∇ · (Kp∇P ) + Sc− Sk = 0. (2.20)

It is relevant to note that the overbar notation is important to remind the
reader that the material derivative is taken according to the mono-phase
constituted advective field, vA|0. When the continuum medium is mono-
phasic, then a single material derivative is required, applied to the flow
phase a, defined by vA|0. But if the continuum medium is a Q-phase flow,

then a multitude of material derivatives can be defined, such as DPn

Dt where
n ∈ {1, 2, ..., Q} and Q is integer, by their multiple counterparts of advective
flows vN |0. A practical implementation is found in Collado (2007) for a two-
phase flow, but very little other references in the litterature focusing this
rather relevant detail was found, to the author’s surprise. This fact alone
is enough to justify the overbar notation in equation2.20, but also to show
the interest of the bracket notation as an adequate formalism to account
correctly which lagrangian specific volumes are to be considered and how
they are inter-related.

Finally, the already well-known fact that the differential equation 2.19,
although correct, is inappropriate to integrate in generic numerical control
volumes, unless these are fixed relative to the reference frame (which is, often
enough, a too cumbersome constraint), obliges the numerical modellers to
think more with finite-volumes rather than to think with finite-differences,
and to use the integral equation 2.18 as the standard conceptual model.

This standard conceptual model based on the motto 2.17 and equa-
tion 2.18 is generic for all conservative property. In particular, under the
presence of an advective field (i.e. a complete set of diffeomorphic volumes),
it is generic for every conservative property in a continuum medium and
it should be used with density, with momentum, with salinity, with tem-
perature, and with any passive tracer. In fact it should be considered as
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the de facto continuity equation. Thus, let us apply equation 2.18 to the
density and consider a material volume VA that moves, expands and twists
conserving the mass, except for diffusive processes. Thus the advective field
is completely absorbed by the moving volume and the resulting candidate
to an integral continuity equation yields

d
∫
VA
ρ dV

dt
= −

∮

∂VA(t0)
Kρ∇ρ dS

+

∫

VA(t0)
(Sc− Sk) dV.

The differential counterpart, though, needs to consider material specific vol-
ume vA

d (ρa vA)

dt
= −∇ · (Kρ∇ρ)a vA + (Sc− Sk)avA

⇔ Dρa

Dt
+ ρa

1

vA

DvA
Dt

= −∇ · (Kρ∇ρ)a + (Sc− Sk)a

⇔ Dρa

Dt
+ ρa

(
∇ · vA|0

)a
= −∇ · (Kρ∇ρ)a + (Sc− Sk)a

⇔ ∂ρa

∂t
+∇ ·

(
ρvA|0

)a
= −∇ · (Kρ∇ρ)a + (Sc− Sk)a.

Thus, comparing the above equation and equation 2.19 one realizes that
they’re identical except that P is set as ρ. Thus the above equation becomes,

∂ρ

∂t
+∇ ·

(
ρvA|0

)
= −∇ · (Kρ∇ρ) + (Sc− Sk) . (2.21)

Equation 2.21 is a good candidate for an extension of the homogeneous differ-
ential continuity equation 2.16. This candidate equation considers diffusive
processes and source and sinks as natural events in a continuous medium.
If the medium is spatially homogeneous, for all time instant, then

∇ρ = 0,

and

Sc− Sk = 0,

otherwise it couldn’t stay homogeneous, thus

∂ρ

∂t
+ ρ

(
∇ · vA|0

)
= 0.
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If the medium density is stationary, then

∂ρ

∂t
= 0,

and

Sc− Sk = 0,

otherwise it couldn’t stay stationary, thus

∇ ·
(
ρvA|0 +Kρ∇ρ

)
= 0.

If the medium density is both stationary and homogeneous, then, in the
context of fluids, the fluid is said to be incompressible, and the continuity
equation simply writes

∇ · vA|0 = 0.

In the very special case that, ∀t,p,

Dρ

Dt
= 0,

then,

∇ · vA|0 = −∇ · (Kρ∇ρ)
ρ

+
(Sc− Sk)

ρ
.

It is important to note that in the context of geophysical fluids, water and
seawater are near-incompressible(Cushman-Roisin and Beckers, 2007; Gill,
1982) in the sense that

∇ρ
ρ

∼ 0.2− 0.5%

i.e.
∇ρ
ρ

� 1

and
1

ρ

∂ρ

∂t
� 1.

Thus, in this context, it is fairly reasonable to consider

∇ · vA|0 ' 0,

which is a part of the Boussinesq approximation(Cushman-Roisin and Beck-
ers, 2007; Gill, 1982).
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2.3 Fluid dynamics

Our founding principles lie in Newton’s inertia law

Dp

Dt
=
∑

F (2.22)

where p represents the momentum of a material particle and
∑

F are the
sum of all applied forces to the particle in an inertial reference frame. Our
physical system is a large ensemble of particles Ω contained within a closed
domain D. Our essential restriction is the principle of mass conservation
unless the presence of well-defined source or sink terms, Sc or Sk for every
closed subset of the domain. Thus, ∀ V0 ∈

{
V : V ∈ D ∧ V = V

}

dM

dt
= Sc − Sk (2.23)

In a fluid, we usually consider particles as being fluid particles, whose vol-
ume size outranges water molecules. Newton’s inertia law (equation [2.22])
is applied to these fluid particles. However, these are still microscopical
particles from the point of view of the physicist, and thus raises the need
to determine macroscopical forces over a material element. This material
element contains a very great number (� 1) of fluid particles and the forces
acting on it are the sum of all the forces applied to the fluid particles within
contained. Furthermore this material element follows all its particles and
doesn’t acquire any more along its path. Thus it can expands or shrink in
volume. Finally, it is adiabatic. In other words (Gill, 1982), for any property
γ of this material element

γ = γ (x(t), y(t), z(t)) = γ (x(t), t) ,

where x is the material element spatial position in function of time, it follows
that the rate of change of γ for the material element is given by

dγ

dt
=
∂γ

∂t
+
∂γ

∂x

dx

dt
+
∂γ

∂y

dy

dt
+
∂γ

∂z

dz

dt
=
∂γ

∂t
+
dx

dt
· ∇γ

And dx
dt is the rate of change of the material element in space which is defined

by fluid physicists as the macroscopical quantity called fluid velocity (Gill,
1982)

dx

dt
≡ u ≡ (u, v, w) . (2.24)
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In the context of fluid dynamics i.e. whenever equation [2.24] applies, we will
rephrase the notation of the time derivative (which is coordinates context
dependent) d

dt and use the material derivative instead

D

Dt
≡ ∂

∂t
+ u · ∇,

which is coordinates independent. Hence the rate of change of the material
element property now writes

Dγ

Dt
≡ ∂γ

∂t
+ u · ∇γ.,

Its utility is straightforward in fluids. For instance, any conserved property
such as mass m or salinity S now writes

Dm

Dt
= 0,

DS

Dt
= 0,

if we neglect molecular diffusion. Hence we can now rewrite the mass con-
servation equation by considering the specific mass ms of a material element
as the product of density ρ by the specific volume vs,

Dms
Dt = Dρvs

Dt = 0
⇔
Dρ
Dt + ρ 1

vs
Dvs
Dt = 0,

Gill (1982) shows that the fractional rate of change of the specific volume is
equal to the divergence of the velocity ∇ · u, i.e.,

β ≡ 1

vs

Dvs
Dt

= ∇ · u. (2.25)

Hence using the latter equation in the former we get

Dρ
Dt + ρ∇ · u = 0 ⇔
∂ρ
∂t + u · ∇ρ+ ρ∇ · u = 0
⇔

∂ρ

∂t
+∇ · (ρu) = 0, (2.26)
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which is the mass conservation equation, or, the continuity equation, and is
one of the founding equations of fluid mechanics.
In an incompressible fluid, the following statement holds

Dρ

Dt
= 0,

and thus the continuity equation for an incompressible fluid writes

∇ · u = 0. (2.27)

The latter expression means that the fractional rate of change of an incom-
pressible material element specific volume is null - this makes sense.

2.4 Geofluid physics

2.4.1 The Primitive Ocean Equations

In this section we expose the primitive Ocean equations under the hydro-
static, Boussinesq and Reynolds approximation. We follow closely the work
of Pietrzak et al. (2002). The equations are written in a Cartesian coor-
dinate system (x, y, z, t). The vertical axis is defined positive going from
−H(x, y) the sea-bed up to η(x, y, t) the free surface. The continuity equa-
tion is given by:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (2.28)

where (u, v, w) is the velocity coordinate vector. The momentum equations
are given by

∂u
∂t +

∂uu
∂x + ∂uv

∂y + ∂uw
∂z − f v =

− 1
ρ0

∂patm
∂x − g ρ(η)ρ0

∂η
∂x +

∫ η
z
∂b
∂x dz

′ + Fx +
∂(υt ∂u

∂z )
∂z

(2.29)

∂v
∂t +

∂vu
∂x + ∂vv

∂y + ∂vw
∂z + f u =

− 1
ρ0

∂patm
∂y − g ρ(η)ρ0

∂η
∂y +

∫ η
z
∂b
∂y dz

′ + Fy +
∂(υt ∂v

∂z )
∂z

(2.30)

0 = − 1
ρ0
∂p
∂z − 1

ρ0
gρ (2.31)

where b is the buoyancy given by b = − g(ρ − ρ0)/ρ0, υt is the vertical
viscosity coefficient, g is the local gravity acceleration, f is the local coriolis
acceleration coefficient, ρ and ρ0 are the local and mean fluid density, patm
is the local atmospheric pressure at the surface and

Fx =

(
υH

∂u

∂x

)
+
∂ (υHu, y)

∂y
(2.32)
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Fy =
∂
(
υH

∂v
∂x

)

∂x
+
∂
(
υH

∂v
∂y

)

∂y
(2.33)

where υH is the horizontal viscosity coefficient. The conservation equation
written for salinity and potential temperature are given by

∂S
∂t +

∂S u
∂x + ∂S v

∂y + ∂S w
∂z =

∂(KH
∂S
∂x )

∂x +
∂
(

KH
∂S
∂y

)

∂y

+
∂(Kt

∂S
∂z )

∂z + Sss

(2.34)

∂T
∂t + ∂T u

∂x + ∂T v
∂y + ∂T w

∂z =
∂(KH

∂T
∂x )

∂x +
∂
(

KH
∂T
∂y

)

∂y

+
∂(Kt

∂T
∂x )

∂x + 1
ρQH + Tss

(2.35)

where Sss and Tss are sink and source terms, KH and Kt are the horizontal
and vertical turbulent diffusivity coefficients and QH is the heat exchange
at the interfaces of the medium. Potential temperature and salinity are the
state variables used to compute the density. There are several density state-
equations used within MOHID including UNESCO (Millero and Poisson,
1981; Millero et al., 2008) and Jackett and Mcdougall (1995).

ρ = ρ(S, T p)

The state-equations are the UNESCO state-equation Millero and Poisson
(1981); Millero et al. (2008); Gill (1982) and the Jackett and Mcdougall
(1995) state-equation. The boundary kinematic condition at the free surface
z = η is

w =
∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
(2.36)

and the sea bed z = −H is

w = −u∂H
∂x

− v
∂H

∂y
(2.37)

The normal (and tangential) velocities are set to zero at the side walls. The
momentum and tracer boundary conditions at the free surface z = η are

υt
∂u

∂z
=
τxs
ρ0

(2.38)

υt
∂v

∂z
=
τys
ρ0

(2.39)
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Kt
∂T

∂z
=

QT
ρ0Cp

(2.40)

Kt
∂S

∂z
= S0 (evap− prec) (2.41)

where the surface wind stress, τxs , τ
y
s is calculated assuming a quadratic

friction law, with

τxs = ρa Ca u10m

√
u210m + v210m

and

τys = ρa Ca v10m

√
u210m + v210m.

The drag coefficient Ca is a function of wind speed and is calculated ac-
cording to the Smith and Banke (1975)(Large and Pond, 1981) formulation
ρa is the density of air taken as 1.25 kg/m3 and u10m or v10m is the wind
speed at 10 m height. QT is the heat flux, evap is the evaporation and prec
is the precipitation, where evaporation/precipitation denotes the net fresh
water surface volume flux rate, and S0 is the surface salinity. Cp is the heat
capacity of sea water, for 35 PSU seawater it has a value of 3986 J kg−1K−1.

At the bed the momentum flux is balanced by quadratic bottom stress
computed using the velocity nearest the bottom and a zero flux condition on
temperature and salinity is imposed. Therefore the corresponding boundary
conditions at the bed z = −H(x, y) are:

υt
∂u

∂z
=
τxb
ρ0

(2.42)

υt
∂v

∂z
=
τyb
ρ0

(2.43)

Kt
∂T

∂z
= 0 (2.44)

Kt
∂S

∂z
= 0 (2.45)

where the bottom stress τxb , τ
y
b is calculated from

τxb = ρ0CD ub

√
u2b + v2b

and

τyb = ρ0CD vb

√
u2b + v2b .
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CD is a drag coefficient given by

CD = κ/ ln

(
zb + z0
z0

)

and ub and vb are the corresponding velocities at depth zb, the depth of
the grid point nearest to the bottom, κ = 0.4 is the von Karman constant,
and z0 m is the roughness length. This formulation is derived assuming
a logarithmic velocity profile in the lowest layer and is for the limit of zb
approaching z0, equivalent to the no-slip boundary condition.

2.4.2 General Vertical coordinates

Standard dimensional analysis of geophysical flows shows that the horizontal
length scale has characteristic velocities a thousand-fold higher than vertical
motion. Thus, numerical models often opted to deal with the vertical co-
ordinate independently from the horizontal coordinates. Furthermore, the
vertical physical processes that occur near the surface or near the thermo-
cline are radically different in nature relatively to those that occur near the
bottom. Each physical process requires its own length and time scale. This
implies an optimal choice of different resolutions along the vertical axis.
Thus the need of describing the equations of motion in a generic vertical co-
ordinate becomes a practical necessity. Furthermore, the classical cartesian
reference frame may not be in alignment with the natural tendency of the
convective flow, which tend to follow along isopycnals and along isobaths.
Diapycnal convection is extremely inhibited and localized, thus diapycnal
flow, however small, is best represented by turbulent diffusive processes.
Hence a vertical coordinate that follows the topography (or isopycnals) is
a pertinent choice (Bleck, 1978) and MOHID in particular presents a wide
variety of vertical coordinates varying from cartesian, to generalized verti-
cal, which allow layers of freely varying thickness, to sigma, the classical
terrain following coordinates. MOHID even allows an hybrid decomposition
of the vertical domain into several sub-domains, each with its own vertical
coordinate and each interfacing at the top and at the bottom with the other
sub-domains. Thus, a generalized vertical coordinate may be introduced as
part of the following transformation of the independent variables (Deleer-
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snijder and Ruddick, 1992):

ψ : R4 −→ R4



t
x
y
z


 7−→




t̃
x̃
ỹ
z̃


 =




t
x
y

z̃ (t, x, y, z)




(2.46)

Where the (t, x, y, z) notation represent the coordinates of one reference
frame, whereas the (t̃, x̃, ỹ, z̃) notation represents coordinates in another
reference frame. ψ, ψ∗ represents the transformation application that maps
bijectively one reference frame with another. The reader must beware that
herein this section (and the following), the use of the standard Einstein
notation to represent sums over space and time coordinates, as well as to
represent partial and total derivatives will be adopted for its compactness
and elegance. Such notation is common ground and well accepted in General
Relativity, but it is also found in Tensorial Mechanics and Thermodynamics.
A related work using such a notation applied to Ocean turbulence is the book
of Burchard (2002). As we perform the change in the frame of reference the
transformation matrix in the dual space is:

ψ∗ : R∗4 −→ R∗4



∂
∂t̃
∂
∂x̃
∂
∂ỹ
∂
∂z̃


 =




1 · · z,t̃
· 1 · z,x̃
· · 1 z,ỹ
· · · z,z̃







∂
∂t
∂
∂x
∂
∂y
∂
∂z




and its inverse is:

(ψ∗)−1 : R∗4 −→ R∗4



∂
∂t
∂
∂x
∂
∂y
∂
∂z


 =




1 · · z̃,t
· 1 · z̃,x
· · 1 z̃,y
· · · z̃,z







∂
∂t̃
∂
∂x̃
∂
∂ỹ
∂
∂z̃




A quick check gives us ψ∗ (ψ∗)−1 = id as supposed to be. Notice that
derivatives of functions independent of z (or z̃) are independent of the generic
vertical coordinate reference frame i.e.

∇f(t, x, y) = ∇f(t̃, x̃, ỹ). (2.47)

However ψ∗ and (ψ∗)−1 as they are, do not fully satisfy our needs since
the elements of the fourth column are derived according to the transformed
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dual-space basis elements and not the pre-image dual-space basis elements.
However the quick check gives us a link: let us define J ≡ z,z̃ = (z̃,z )

−1

and thus ∂
∂z = J−1 ∂

∂z̃ . We can now invert ψ∗ using this latter relation and
obtain:

(ψ∗)−1 : R∗4 −→ R∗4



∂
∂t
∂
∂x
∂
∂y
∂
∂z


 =




1 · · −z,t̃ J−1

· 1 · −z,x̃ J−1

· · 1 −z,ỹ J−1

· · · J−1







∂
∂t̃
∂
∂x̃
∂
∂ỹ
∂
∂z̃




(2.48)

and from the above transformation we can establish a relation between all
the elements of the fourth columns of ψ∗ and (ψ∗)−1:




z,t̃
z,x̃
z,ỹ
z,z̃


 =




−z̃,t J
−z̃,x J
−z̃,y J
J


 .

Now given any transformation of type ψ (2.46), and once calculated its dual-
space basis transformation (ψ∗)−1(2.48), the coordinate transformation can
occur straightforwardly.

Let us now define a more appropriate velocity vector in sigma (σ) coor-
dinates, one that is similar when defining the total derivative i.e.

D

Dt
=

∂

∂t̃
+ ũ

∂

∂x̃
+ ṽ

∂

∂ỹ
+ w̃

∂

∂σ

=
∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z

=
∂

∂t̃
− z,t̃ J

−1 ∂

∂σ
+ u

(
∂

∂x̃
+ z,x̃ J

−1 ∂

∂σ

)

+v

(
∂

∂ỹ
+ z,ỹ J

−1 ∂

∂σ

)
+ wJ−1 ∂

∂σ

=
∂

∂t̃
+ u

∂

∂x̃
+ v

∂

∂ỹ
+ J−1 (w − z,t̃−z,x̃ u− z,ỹ v)

∂

∂σ
. (2.49)

If we associate the first and last lines from the latter equation set, we obtain
an appropriate sigma velocity vector:



ũ
ṽ
w̃


 =



u
v
J−1 (w − z,t̃−z,x̃ u− z,ỹ v)


 . (2.50)
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Let us now obtain a function integral in the new reference frame

∫ z=b

z=a
f(z)dz =

∫ σ=ψ(b)

σ=ψ(a)
f(ψ(z))(z,σ =ψ(z))dσ

=

∫ σ=ψ(b)

σ=ψ(a)
f(ψ(z))J(ψ(z))dσ

=

∫ σ=ψ(b)

σ=ψ(a)
f(ψ(z))J(ψ(z))dσ

We can now proceed in order to obtain the continuity, momentum and tracer
equations in a general vertical coordinate system,

Ju,x+Jv,y +Jw,z = 0

Ju,x̃−z,x̃ u,σ +v,ỹ −z,ỹ v,σ +w,σ = 0,

Ju,x̃+Jv,ỹ +w,σ −z,x̃ u,σ −z,ỹ v,σ = 0,

Ju,x̃+Jv,ỹ +(w − z,t̃−z,x̃ u− z,ỹ v) ,σ +z,t̃σ +u z,x̃σ +v z,ỹσ = 0,

Ju,x̃+Jv,ỹ +(Jw̃),σ +z,σt̃+u z,σx̃+v z,σỹ = 0,

Ju,x̃+Jv,ỹ +(Jw̃),σ +J,t̃+J,x̃ u+ J,ỹ v = 0,

J,t̃+(Ju),x̃+(Jv),ỹ +(Jw̃),σ = 0,

hence the continuity equation writes

J, t̃ + (Ju), x̃ + (Jv), ỹ + (Jw̃), σ = 0. (2.51)

On the other hand, the momentum equation in the classic cartesian reference
frame writes

u,t=

−(uu),x−(vu),y −(wu),z +f v

− 1

ρ0
patm,x−

ρ(η)

ρ0
η,x+

∫ η

z
b,x dz

′

+Fx + (νtu,z ) ,z .

Hence, the momentum equation yields, by means of the transformation of
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reference,

Ju,t̃−z,t̃ u,σ =
−J(uu),x̃+z,x̃ (uu),σ
−J(vu),ỹ +z,ỹ (vu),σ
−(wu),σ

+Jf v − 1

ρ0
Jpatm,x̃+

1

ρ0
z,x̃ patm,σ

−ρ(η)
ρ0

Jη,x̃+
ρ(η)

ρ0
z,x̃ η,σ

+J

∫ 0

σ

(
b,x̃−z, x̃J−1b,σ′

)
J dσ′

+JFx +
(
νtJ

−1u,σ
)
,σ ,

Ju,t̃=

−J(uu),x̃−J(vu),ỹ
− (wu− z,t̃ u+ z,x̃ uu+ z,ỹ vu) ,σ

−z,t̃σ u− z,x̃σ uu− z,ỹσ vu

+Jf v − 1

ρ0
Jpatm,x̃−

ρ(η)

ρ0
Jη,x̃

+J

∫ 0

σ

(
b,x̃−z,x̃ J−1b,σ′

)
J dσ′

+JFx +
(
νtJ

−1u,σ
)
,σ ,

Ju,t̃=

−J(uu),x̃−J(vu),ỹ − (Jw̃ u) ,σ

−z,σt̃ u− z,σx̃ uu− z,σỹ vu

+Jf v − 1

ρ0
Jpatm,x̃−

ρ(η)

ρ0
Jη,x̃

+J

∫ 0

σ

(
b,x̃−z,x̃ J−1b,σ′

)
J dσ′

+JFx +
(
νtJ

−1u,σ
)
,σ ,
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Ju,t̃=

−J(uu),x̃−J(vu),ỹ − (Jw̃ u) ,σ

−J,t̃ u− J,x̃ uu− J,ỹ vu

+Jf v − 1

ρ0
Jpatm,x̃−

ρ(η)

ρ0
Jη,x̃

+J

∫ 0

σ

(
b,x̃−z,x̃ J−1b,σ′

)
J dσ′

+JFx +
(
νtJ

−1u,σ
)
,σ ,

(Ju), t̃ =

−(Juu),x̃−(Jvu),ỹ − (Jw̃ u) ,σ

+Jf v − 1

ρ0
Jpatm,x̃−

ρ(η)

ρ0
Jη,x̃

+J

∫ 0

σ

(
b,x̃−z,x̃ J−1b,σ′

)
J dσ′

+JFx +
(
νtJ

−1u,σ
)
,σ ,

thus, we obtain the momentum equations

(Ju), t̃ =

−(Juu), x̃ − (Jvu), ỹ − (Jw̃ u), σ

+Jf v − 1

ρ0
Jpatm, x̃ −

ρ(η)

ρ0
Jη, x̃

+J

∫ 0

σ

(
b, x̃J − z,x̃ b, σ′

)
dσ′

+JFx +
(
νtJ

−1u, σ
)
, σ

; (2.52)

and

(Jv), t̃ =

−(Juv), x̃ − (Jvv), ỹ − (Jw̃ v), σ

−Jf u− 1

ρ0
Jpatm, ỹ −

ρ(η)

ρ0
Jη, ỹ

+J

∫ 0

σ

(
b, ỹJ − z,ỹ b, σ′

)
dσ′

+JFy +
(
νtJ

−1v, σ
)
, σ

; (2.53)
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by symmetry.

S,t=

−(uS),x−(vS),y −(wS),z

Fs + (νtu,z ) ,z +Sss,

JS,t̃−z,t̃ S,σ =
−J(uS),x̃+z,x̃ (uS),σ −J(vS),ỹ +z,ỹ (vS),σ −(wS),σ

+JFS + (DtJ
−1S,σ ),σ +JSss,

JS,t̃=

−J(uS),x̃−J(vS),ỹ −(wS),σ

+z,t̃ S,σ +z,x̃ (uS),σ +z,ỹ (vS),σ

+JFS + (DtJ
−1S,σ ),σ +JSss,

JS,t̃=

−J(uS),x̃−J(vS),ỹ − (wS − z,t̃ S + z,x̃ uS + z,ỹ vS) ,σ

−z,t̃σ S − z,x̃σ uS − z,ỹσ vS

JFS + (DtJ
−1S,σ ),σ +JSss,

JS,t̃=

−J(uS),x̃−J(vS),ỹ − (Jw̃S) ,σ

−z,σt̃ S − z,σx̃ uS − z,σỹ vS

+JFS + (DtJ
−1S,σ ),σ +JSss,

JS,t̃=

−J(uS),x̃−J(vS),ỹ − (Jw̃S) ,σ

−J,t̃ S − J,x̃ uS − J,ỹ vS

+JFS + (DtJ
−1S,σ ),σ +JSss,

(JS),t̃=

−(JuS),x̃−(JvS),ỹ − (Jw̃S) ,σ

+JFS + (DtJ
−1S,σ ),σ +JSss,

thus, we obtain the tracer equations

(JS), t̃ =

−(JuS), x̃ − (JvS), ỹ − (Jw̃S), σ

+JFS +
(
DtJ

−1S, σ
)
, σ

+ JSss, (2.54)
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and

(JT ), t̃ =

−(JuT ), x̃ − (JvT ), ỹ − (Jw̃T ), σ

+J FT +
(
DtJ

−1T, σ
)
, σ

+ JTss + J QH . (2.55)

Thus equations 2.51, 2.52, 2.53, 2.54, 2.55 combined with the density equa-
tion of state form the set known as the Primitive Ocean Equations in a
generic vertical coordinate reference frame.

The Sigma coordinate

In the case of the re-known sigma coordinate z̃ (t, x, y, z) ≡ σ

σ ≡ η − z

H + η
(2.56)

The reference frame is centered somewhere in the surface plane and the
vertical z-basis vector points towards the stars. The bottom depth is given
by H (x, y) and is assumed not to vary with time, the free surface is given
by η (t, x, y) and the generic z-coordinate (in cartesian reference frame) is
given by z. Let us perform the calculations to obtain (ψ∗)−1:

z̃,t=
η − z

H + η
,t = η,t / (H + η)− (η − z)

(H + η) ,t

(H + η)2

= η,t / (H + η)− η,t
(η − z)

(H + η)2

=
η,t

H + η

(
1− η − z

H + η

)

=
η,t

H + η
(1− σ) ;

z̃,x=
η − z

H + η
,x = η,x / (H + η)− (η − z)

(H + η) ,x

(H + η)2

= η,x / (H + η)− (H + η) ,x
(η − z)

(H + η)2

=
η,x (1− σ)−H,x σ

H + η

=
η,x−σ (H + η) ,x

H + η
;
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by symmetry, along y, the calculation yields

z̃,y =
η,y −σ (H + η) ,y

H + η
;

and finally along z

z̃,x=
η − z

H + η
,z = − (H + η)−1 .

Thus the transformation (ψ∗)−1 writes:

(ψ∗)−1 =




1 · · η,t
H+η (1− σ)

· 1 · η,x(1−σ)−H,xσ
H+η

· · 1
η,y−σ(H+η),y

H+η

· · · − (H + η)−1


 (2.57)

If we now want to find ψ∗:

σ = η−z
H+η

⇐⇒ (η − z) = σ (H + η)
⇐⇒ z = η − σ (H + η) ;

(2.58)

we can now easily calculate, noting that the base elements are independent
in the transformed reference frame

z,t̃ = η,t̃−σ (H + η) ,t̃
= η,t̃−ση,t̃
= η,t̃ (1− σ) ;

z,x̃ = η,x̃−σ (H + η) ,x̃

= η,x̃ (1− σ)− σH,x̃ ;

z,ỹ = η,ỹ −σ (H + η) ,ỹ

= η,ỹ (1− σ)− σH,ỹ ;

z,σ = − (H + η)

≡ J

52



2.4. GEOFLUID PHYSICS

Thus the transformation ψ∗ writes:

ψ∗ =




1 · · η,t̃ (1− σ)
· 1 · η,x̃− (H + η) ,x̃ σ
· · 1 η,ỹ − (H + η) ,ỹ σ
· · · − (H + η)


 , (2.59)

and thus, the transformation matrix (2.48), after computation, is:

(ψ∗)−1 =




1 · · η,t̃
(H+η) (1− σ)

· 1 · η,x̃−(H+η),x̃σ
H+η

· · 1
η,ỹ−(H+η),ỹσ

H+η

· · · − (H + η)−1


 . (2.60)

Hence, we can now use operators ψ and (ψ∗)−1 to transform equations [2.28-
2.37] in the sigma reference frame. But before that, let us define a more
appropriate velocity vector in sigma coordinates, one that is similar when
defining the total derivative i.e.

D

Dt
=

∂

∂t̃
+ ũ

∂

∂x̃
+ ṽ

∂

∂ỹ
+ w̃

∂

∂z̃

=
∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z

=
∂

∂t̃
− η,t̃ (1− σ)J−1 ∂

∂z̃

+u
∂

∂x̃
− u [η,x̃− (H + η) ,x̃ σ]J

−1 ∂

∂z̃

+v
∂

∂ỹ
− v [η,ỹ − (H + η) ,ỹ σ] J

−1 ∂

∂z̃

+wJ−1 ∂

∂z̃
(2.61)

=
∂

∂t̃
+ u

∂

∂x̃
+ v

∂

∂ỹ

+ [w − (η,t̃+η,x̃ u+ η,ỹ v) (1− σ)− (−H,x̃ u−H,ỹ v) σ]J
−1 ∂

∂z̃

=
∂

∂t̃
+ u

∂

∂x̃
+ v

∂

∂ỹ
+ [w − wη (1− σ)− wHσ] J

−1 ∂

∂z̃
, (2.62)

where wη is the surface vertical velocity and wH is the bottom vertical
velocity, both in the cartesian reference frame. Notice that in the last line
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we made use of(2.47). If we associate the first and last lines from the latter
equation set, we obtain an appropriate sigma velocity vector:



ũ
ṽ
w̃


 =



u
v
(w − wη (1− σ)− wHσ) J

−1


 . (2.63)

The latter expression is similar to equation(8) from Deleersnijder (1989).
Notice how the surface and bottom velocities both form the upslopping
term while the sigma velocity itself is the upwelling term.

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (2.64)

2.4.3 Energy equations

All physical quantities must derive from the Primitive Ocean equations
(2.28-2.35)] as they are our hypotheses. And so must the energy equations.
Hence if we multiply (2.29)

u, t =

−(uu), x − (uv), y − (uw), x + f v

− 1

ρ0
patm, x − g

ρ(η)

ρ0
η, x +

∫ η

z
b, x dz

′

+Fx + (υtu, z), z ,

by ρ0u

ρ0uu, t =

−ρ0u(uu), x − ρ0u(uv), y − ρ0u(uw), z + ρ0u f v

−u patm, x − u g ρ(η) η, x + ρ0u

∫ η

z
b, x dz

′

+ρ0uFx + ρ0u (υtu, z), z

(
1

2
ρ0u

2), t =

−(
1

2
ρ0u

2u), x − (
1

2
ρ0u

2v), y − (
1

2
ρ0u

2w), z + ρ0u f v

−u patm, x − u g ρ(η) η, x + ρ0u

∫ η

z
b, x dz

′

+ρ0uFx + ρ0u (υtu, z), z ,
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and if (2.30),

v, t =

−(vu), x − (vv), y − (vw), x − f u

− 1

ρ0
patm, y − g

ρ(η)

ρ0
η, y +

∫ η

z
b, y dz

′

+Fy + (υtv, z), z ,

is multiplied by ρ0v,

ρ0vv, t =

−ρ0v(vu), x − ρ0v(vv), y − ρ0v(vw), z − ρ0v f u

−v patm, y − v g ρ(η) η, y + ρ0v

∫ η

z
b, y dz

′

+ρ0vFy + ρ0v (υtv, z), z ,

(
1

2
ρ0v

2), t =

−(
1

2
ρ0v

2u), x − (
1

2
ρ0v

2v), y − (
1

2
ρ0v

2w), z − ρ0v f u

−v patm, y − v g ρ(η) η, y + ρ0v

∫ η

z
b, y dz

′

+ρ0vFy + ρ0v (υtv, z), z ,

and (2.31) by ρ0w

0 = −wp, z − wgρ,

and adding them yields

(
1

2
ρ0u

k̂uk̂), t =

−(
1

2
ρ0u

k̂uk̂u
i), i − wp, z − wgρ

−uk̂ patm, k̂ − uk̂ g ρ(η) η, k̂ + ρ0u
k̂

∫ η

z
b, k̂ dz

′

+ρ0u
k̂
(
υijuk̂, j

)
, i
,
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(
1

2
ρ0u

k̂uk̂), t =

−(
1

2
ρ0u

k̂uk̂u
i), i −wp, z − wgρ

−uk̂ patm, k̂ − uk̂ g ρ(η) η, k̂ + ρ0u
k̂

∫ η

z
b, k̂ dz

′

+

(
υij
(
1

2
ρ0u

k̂uk̂

)

, j

)

, i

−
(
ρ0u

k̂
)
, i

(
υijuk̂, j

)
,

(
1

2
ρ0u

k̂uk̂), t =

−(
1

2
ρ0u

k̂uk̂u
i), i −wgρ

−uk̂
(
patm, k̂ + g ρ(η) η, k̂ − ρ0

∫ η

z
b, k̂ dz

′
)
− wp, z

+

(
υij
(
1

2
ρ0u

k̂uk̂

)

, j

)

, i

−
(
ρ0u

k̂
)
, i

(
υijuk̂, j

)
,

(
1

2
ρ0u

k̂uk̂), t =

−(
1

2
ρ0u

k̂uk̂u
i), i −wgρ

−uk̂
(
patm, k̂ +

(∫ η

z
ρ g dz′

)

, k̂

)
− wp, z

+

(
υij
(
1

2
ρ0u

k̂uk̂

)

, j

)

, i

−
(
ρ0u

k̂
)
, i

(
υijuk̂, j

)
,

(
1

2
ρ0u

k̂uk̂), t =

−(
1

2
ρ0u

k̂uk̂u
i), i −wgρ

−uip, i

+

(
υij
(
1

2
ρ0u

k̂uk̂

)

, j

)

, i

−
(
ρ0u

k̂
)
, i

(
υijuk̂, j

)
,
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(
1

2
ρ0u

k̂uk̂), t =

−(
1

2
ρ0u

k̂uk̂u
i), i − wgρ

−
(
uip
)
, i
+ ui, ip

+

(
υij
(
1

2
ρ0u

k̂uk̂

)

, j

)

, i

−
(
ρ0u

k̂
)
, i

(
υijuk̂, j

)
,

(
1

2
ρ0u

k̂uk̂), t =

−(
1

2
ρ0u

k̂uk̂u
i), i − wgρ

−
(
uip
)
, i
+ 0

+

(
υij
(
1

2
ρ0u

k̂uk̂

)

, j

)

, i

−
(
ρ0u

k̂
)
, i

(
υijuk̂, j

)
,

where uk̂ ∈ {u, v} and ui ∈ {u, v, w}. It is then deduced the transport
equation of a conserved quantity κ,

κ =
1

2
ρ0u

k̂uk̂, (2.65)

whose closest physical affinity is the kinetic energy of a fluid particle, where
k̂ is, in this case, a summation over x and y coordinates only, ε is the internal
dissipation rate of the fluid particle given by

ε = υijuk̂, iuk̂, j, (2.66)

and p is the pressure, obtained by integration of equation [2.31]

p(z) = patm +

∫ η

z
ρgdz′,

= patm + ρ0g(η − z)−
∫ η

z
ρ0bdz

′.

Thus the quantity defined in equation (2.65) is a conserved quantity, shown
in the following equation

κ, t +
(
κui − υijκ, j + uip

)
, i
= −ρgw − ρ0ε. (2.67)
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If we now integrate (2.67) in a closed and sealed volume V , i.e. where
vi · ni = 0 and υij = 0 in its border (ni being its normal vector), we find
(using the divergence theorem)

∫

V
κ, t dV = −

∫

V

(
κui − υijκ, j + uip

)
, i
dV

−
∫

V
ρgw dV −

∫

V
ρ0ε dV

⇔∫

V
κ, t dV = −

∮

∂V

(
(κ+ p)ui + υijκ, j

)
· ni dA

−
∫

V
ρgw dV −

∫

V
ρ0ε dV

⇔

K, t = −
∫

V
ρgw dV −

∫

V
ρ0ε dV, (2.68)

where K stands for the kinetic energy of the closed volume,

K =

∫

V

1

2
ρ0u

k̂uk̂ dV.

Since the total energy (TE) in V ,

TE = K + P + I,

where P is the potential energy and I is the internal energy, is conserved,

TE, t = 0,

we can easily postulate from (2.68) that

P, t =

∫

V
ρgw dV, (2.69)

I, t =

∫

V
ρ0ε dV. (2.70)

However, we might want to know the rate of change of P and I in any
subvolume V0 of V . Since the potencial energy is the energy stored in the
gravitic field, we can stipulate that the specific potential energy π is given
by

π = ρgz, (2.71)
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relatively to a zero potential level. This zero-potential level is the equipoten-
tial where g ' 9.8, hence, the approximate involucre of the Earth’s surface.
The corresponding potential energy in V0 is

P =

∫

V0

ρgz dV.

The transport equation of π is

π, t + uiπ, i = ρgw. (2.72)

It is only natural that we associate the internal energy (or heat) equation
to the temperature (T ) equation. And it should be expected that once
integrated in an adiabatic volume it yields (2.70). Here we will show how:
if we consider the material derivative of specific entropy (µ) of a water
parcel (or fluid particle) (ρT Dµ

Dt ), then, as it cannot be in isentropic motion,
for it is strained to the action of radiative exchange(Gill, 1982) with the
surroundings (Frad), heat exchange by molecular conduction (k T, i) and
heating due to viscous dissipation, we must equate:

ρT
Dµ

Dt
=
(
−F irad + k T , i

)
, i
+ ρε, (2.73)

where k is the thermal conductivity (around ∼ 0.6 W m−1 K−1 for water).
On the other hand, If we take note on the first law of thermodynamics, we
have

De

Dt
= T

Dµ

Dt
− p

Dvs
Dt

, (2.74)

where e is the internal energy per unit mass. Furthermore, Gill (1982)
states the following relation between entropy and potential temperature θ
(may the reader mind that whenever potential temperature is used instead
of temperature, then implicitly, pressure is referred relative to a reference
pressure pr at the surface)

θ
Dµ

Dt
= cp(pr, θ)

Dθ

Dt
, (2.75)

where cp is the specific heat at constant pressure. Under the Boussinesq ap-
proximation (in a near-incompressible fluid we have ∇·v = 0 i.e. 1

vs
Dvs
Dt = 0)

and considering potential temperature, (2.74) and (2.75) yield the relations

ρ0
De

Dt
⇔ ρ0θ

Dµ

Dt
⇔ ρ0cp

Dθ

Dt
. (2.76)
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Hence internal energy per unit mass is related to potential temperature
under the Boussinesq approximation by

de = cp dθ. (2.77)

Hence relating (2.76) with (2.73) we get the following equation for the in-
ternal energy

ρ0
De

Dt
=
(
−F irad + k T , i

)
, i
+ ρ0ε

⇔ (ρ0e), t +
(
ρ0e u

i + F irad − k T , i
)
, i
= ρ0ε

⇔ ι, t +
(
ι ui + F irad − k T , i

)
, i
= ρ0ε. (2.78)

Thus the internal energy transport equation (2.78) was obtained, where

ι = ρ0e (2.79)

is the specific internal energy. Consequently, the internal energy in any
given volume V0 is

I =

∫

V0

ρ0e dV,

and, in the case of an isolated system, integrating (2.78) over the system’s
volume would yield (2.70), as expected. However, the oceanographer com-
munity find a better use for an equivalent expression of (2.78) in terms of
potential temperature θ. Furthermore, given the phenomenological nature
of Fourier’s Law, −k T , i, it is legitimate to argue that one could experimen-
tally validate as well a −k ′θ, i law. Thus, relating (2.76) with (2.78), we
obtain the following equation set

ρ0 cp
Dθ

Dt
=
(
−F irad + k θ, i

)
, i
+ ρ0ε

⇔ Dθ

Dt
=
(
−F ′ i

rad + k ′ θ, i
)
, i
−
(
−F irad + k θ, i

) cp, i
ρ0 c2p

+
ε

cp

⇔ Dθ

Dt
=
(
−F ′ i

rad + k ′ θ, i
)
((

−F ′ i
rad + k ′ θ, i

)
, i(

−F ′ i
rad + k ′ θ, i

) − cp, i
cp

)
+

ε

cp

⇔ ι, t +
(
ι ui + F irad − k T , i

)
, i
= ρ0ε, (2.80)

The basics for deducing coherent energy equations of motion were laid.
The specific kinetic energy is defined in (2.65), the specific potential energy
is defined in (2.71) and the specific internal energy is defined in (2.79). Their
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respective equations of motion are defined in (2.67), in (2.72) and in (2.80).
The specific total energy % is defined by it’s sum

% ≡ κ+ ι+ π =
1

2
ρ0u

k̂uk̂ + ρ0e+ ρgz, (2.81)

and its equation of motion sums up to

%, t +
(
% ui + F i

)
, i
= 0, (2.82)

as expected. F is the sum of the radiative and diffusive fluxes and is defined
by

F i = F irad − k T , i − υijκ, j + uip. (2.83)

A last note reminds that the external heat and kinetic fluxes, namely atmo-
spheric fluxes, are contained within the F irad and υij terms (refer to (2.38)
and (2.39)).

2.4.4 Mixing

Traditionally the mixing issue rises from unresolved time and length scales
from the model (Burchard, 2002). Thus parameterizing the unresolved flow
becomes a necessity. Thus, traditionally, this section should appear a pos-
teriori regarding the discretized equations of motion. However, we find it
interesting to insert the mixing section here, as we can generalize it in or-
der to partitionate the flow length scales in two classes: macro-scale and
micro-scale. The first one regards the statistical mean flow which is, in fact,
a reference flow; whereas the latter one regards the flow anomaly relative to
the reference flow and regards, in fact, a perturbation flow. This partitioning
is, in fact, none other than the Reynolds decomposition:

x = x+ x′

where x is a statistical average of x at a given point in space over an ensemble
of system states and x′ is the perturbation. Thus this implies that x′ = 0.

Other useful relations are x = x, a b = a b and
∫ b+x′
a f(y) dy =

∫ b
a f(y) dy if

f is symmetric in b along y. Another useful result, given

x, a = (x, a) + (x, a)
′

x, a = (x+ x′), a = x, a + x′, a,

is the following
(x, a) = x, a
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(x, a)
′ = x′, a.

Now if we apply the Reynolds decomposition to the inertia terms of the

momentum equation, i.e. dp
dt =

d(p+p′)
dt ,

(u+ u′), t
+ ((u+ u′)(u+ u′)), x + ((v + v′)(u+ u′)), y
+ ((w +w′)(u+ u′)), z − f(v + v′)

⇔
(u), t

+ ((u+ u′)(u+ u′)), x + ((v + v′)(u+ u′)), y
+ ((w +w′)(u+ u′)), z − f(v + v′)

Hence the momentum equation with molecular diffusion becomes

(u), t − fv − fv′ =

−((uu), x − (uu′), x − (u′u), x − (u′u′), x)

−((vu), y − (vu′), y − (v′u), y − (v′u′), y)

−((wu), z − (wu′), x − (w′u), z − (w′u′), z)

− 1

ρ0
(patm, x − p′atm, x)− g

ρ(η)

ρ0

(
η, x + η′, x

)

+

∫ η

z
b, xdz

′ +
∫ η+η′

η
b, xdz

′

+(ν u, x), x + (ν u, y), y + (ν u, z), z

+(ν u′, x), x +
(
ν u′, y

)
, y

+
(
ν u′, z

)
, z

where ν is the molecular viscosity tensor. Now, if we average the momentum
equation we get

u, t =

−(uu), x − (u′u′), x − (vu), y − (v′u′), y
−(wu), z − (w′u′), z + fv

− 1

ρ0
patm, x − g

ρ(η)

ρ0

(
η, x
)
+

∫ η

z
b, xdz

′

+(ν u, x), x + (ν u, y), y + (ν u, z), z (2.84)
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If we average the other primitive ocean equations we obtain the full Reynold’s
equations:

v, t =

−(uv), x − (u′v′), x − (vv), y − (v′v′), y (2.85)

−(wv), z − (w′v′), z − fu

− 1

ρ0
patm, y − g

ρ(η)

ρ0

(
η, y
)
+

∫ η

z
b, ydz

′

+(ν v, x), x + (ν v, y), y + (ν v, z), z (2.86)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (2.87)

S, t =

−(uS), x − (u′S′), x − (vS), y − (v′S′), y − (wS), z − (w′S′), z
+
(
ν S, x

)
, x

+
(
ν S, y

)
, y

+
(
ν S, z

)
, z

+ Sss (2.88)

T , t

−(uT ), x − (u′T ′), x − (vT ), y − (v′T ′), y − (wT ), z − (w′T ′), z

+(ν T , x), x +
(
ν T , y

)
, y

+
(
ν T , z

)
, z

+
1

ρ
QH + T ss. (2.89)

For the density, it is assumed that the Taylor series around (T ′, S′, p′) con-
verges fast so the higher terms can be neglected, and thus

ρ = ρ
(
T + T ′, S + S′, p+ p′

)
≈ ρ

(
T , S, p

)
. (2.90)

As we can see, mixing terms such as u′u′, v′u′ and w′u′ in (2.84) appear in
equations (2.84-2.89) from the unresolved turbulent flow. As in general the
perturbation velocities are unknown, an adequate parametrization of the
mixing terms is required. Based on the assumption that the mixing terms
tend to homogenize spatial gradients, a parametrization similar to Fick’s law
is traditionally adopted where the turbulent viscosity tensor is considered
diagonal. Furthermore, the mathematical modelling of the primitive Ocean
equations generally lead to give a vertical viscosity and diffusion term and
an horizontal viscosity and diffusivity term such as:

u′u′ = −2νHu, x
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v′u′ = −2νH (u, y + v, x)

w′u′ = −νtu, z.
Note that νH � ν and νt � ν so the momentum equation usually writes as
(2.29) and (2.30).
All of these calculations have been made only for the u-component of the mo-
mentum equations. The parametrization and calculation for the v-component
of Reynolds equations (2.85-2.88) are performed in a similar manner.
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Chapter 3

Discretizing and modeling

the physics of fluids

3.1 Implementing a 1D vertical model in MOHID

A correct parametrization of vertical mixing is crucial to adequately repro-
duce known typical coastal physical ocean processes such as upwelling, in-
ternal waves, their propagation, their dissipation and their interaction with
the bathymetry. More specifically, vertical diffusive and mixing processes
are paramount to correctly represent an adequate vertical profile of the den-
sity, also known as the stratification of the water-column, especially near the
surface level, where atmospheric forcing affects both the kinetic energy and
the internal energy of the water-column. Some key descriptive qualitative
concepts that visually render the vertical stratification of the water-column
are the mixed layer depth and the thermocline(Gill, 1982). The mixed layer
is the surface layer of a pond or of a large waterbody that feels the effect
of the wind and atmospheric radiation(Chapra, 1997). As such, it is well
mixed and generally warmer than below. Its depth varies seasonally. In
the ocean it varies in the range from 30 m to 150 m. The thermocline is a
feature displaying a maximum vertical temperature gradient near the depth
of the complete aborption of incident solar radiation. Its depth varies sea-
sonally and ranges from 50 m to 300 m in the Ocean (Gill, 1982). Perhaps
a more quantitative parameter that accurately describes the water-column
stratification is the Brunt-Vaisalla frequency(Brunt, 1927). The higher the
frequency of the vertical displacement of water parcels relative to their state
of equilibrium, the higher the stratification and the lesser the diapycnal (ver-
tical) diffusion. The vertical mixing process is quite non-linear since. On
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one hand, it directly redistributes mass throughout the water-column, thus
affecting the density and stratification of the latter but, on the other hand,
the vertical diffusivity coefficients values are shown to be directly correlated
with the stratification itself(Burchard and Others, 2002). Beyond coastal
processes, estuarine flows are also highly dependent on their stratification,
especially when one considers tide circulation and the fact that a high salin-
ity gradients co-exist in estuarine environments due to the land-incoming
freshwater clashing with the Ocean salty water. Thus vertical mixing is also
very important for Regions of freshwater influence (ROFIs). The physics
of the circulation become extremely affected by high horizontal and vertical
density gradients both on Ocean basin, coastal and estuarine circulation.
The hydrodynamic of estuarine nature is also extremely influenced by the
density distribution, especially due to the salinity strong uneven distribution
that produces superposed layers of freshwater running atop of salty water,
both moving on opposite directions. At the front, high stresses inducing
a high shear causing massive kinetic energy dissipation and causing high
diffusion and mixing. On the Ocean and near the coast, the hydrodynamic
is affected by the density-gradient at the time scale of years and decades,
when the atmospheric induced circulation is averaged out. This circulation
is called thermo-haline due to its nature. Indeed, a state-of-the-art vertical
turbulent model is recommended to be used and should be accurately cal-
ibrated if the goal is to obtain realistic vertical density profiles exhibiting
both realistic seasonal mixed layer depth and seasonal thermocline.

Thus, in order to qualify MOHID as a suitable model to reproduce such
realistic vertical density profiles, a test-case was considered that would en-
compass the following characteristics:

• Null horizontal density gradients

• Low horizontal velocities throughout the year (below 1 cm/s)

• Low wind-stress throughout the year

• Tidal waves of small amplitude

• Yearly available in-situ data

The case-study of choice is found in the GOTM technical manual (Burchard
et al., 1999), station PAPA, situated in the middle of the Pacific ocean,
where a NOAA buoy coupled with an ADCP and meteorological sensors
extracted the precious in-situ data for whole years in a row. The GOTM

66



3.1. IMPLEMENTING A 1D VERTICAL MODEL IN MOHID

technical manual exhibits an astounding conformance in the yearly tempera-
ture profile time-serie between the model results and the experimental data.
The idea is to guarantee that MOHID results should also exhibit the same
conformance. Guaranteeing good results in this test-case proves not only
that GOTM was well integrated within MOHID, but also that MOHID is
then equipped and capable of generating correct mixed layer depth and sea-
sonal thermocline all year long for the Ocean, given a correct atmospheric
forcing.

Firstly, it’s important to remind that GOTM is an acronym that stands
for General Ocean Turbulence Model, and was devised as a stand-alone one-
dimensional vertical model that would implement a suite of state-of-the-art
vertical turbulence models(Burchard, 1999; Burchard and Bolding, 2001;
Umlauf and Burchard, 2005), such as k − ε and Mellor-Yamada(Mellor and
Yamada, 1982) turbulence model. The GOTM code is open-source and was
injected as a new module in the MOHID modular architecture(Villarreal,
2000; Braunschweig et al., 2004), thus fully integrating MOHID and gener-
ating the vertical turbulent viscosity coefficients from the chosen turbulence
closure model. Second, the PAPA station experimental data was obtained
from Lars Umlauf’s team, the developers of GOTM. Third, MOHID, at
the time of the test-case, still had not implemented a pure vertical one-
dimensional model. Thus the author implemented the current version of
the one-dimensional vertical model for MOHID, which allows a ten-fold in-
crement in speed as it only requires a 3x3xN 3-D matrix and it strips out
90% percent of the code relative to horizontal advection-diffusion. The one-
dimensional vertical model in MOHID is chosen in the Hydrodynamic mod-
ule by defining VERTICAL1D as the option instead of the default SOLVE
EQUATIONS option for the EVOLUTION parameter. It’s main routine
consists of only six calls to already existent subroutines in the Module Hy-
drodynamic, thus making it the best possible implementation of such a
feature in MOHID.

3.1.1 Preliminary results

The models results are expected to reproduce a stably stratified potential
temperature and salinity profile and an oscillating Ekman spiral, from the
dynamical point of vue. The Ekman spiral is produced by the dynamical
combination of the influence of wind stress over the Ekman layer and the
Coriolis force(Ekman, 1902; Jenkins and Bye, 2006). At the surface, the
wind stress is dominant over the Coriolis force, but at the bottom of the
Ekman spiral, the Coriolis force dominates over the influence of wind-stress,
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thus the flow direction and intensity evolves vertically in a diminishing spiral
from the surface to the bottom of the Ekman layer, known as the Ekman
depth. This column of flow spiral oscillates around an equilibrium average
with the Earth’s inertial frequency. From the mathematical perspective
of the Navier-Stokes equations for a near-incompressible fluid (Boussinesq
approximation) under the hydrostatic approximation(Roisin, 1994),




∂u
∂t + u∂u∂x + v ∂u∂y + w ∂u

∂z − fv = − 1
ρ0
∂p
∂x +K

(
∂2u
∂x2 + ∂2u

∂y2 + ∂2u
∂z2

)

∂v
∂t + u∂v∂x + v ∂v∂y + w ∂v

∂z + fu = − 1
ρ0
∂p
∂y +K

(
∂2v
∂x2

+ ∂2v
∂y2

+ ∂2v
∂z2

)

∂w
∂t + u∂w∂x + v ∂w∂y + w ∂w

∂z = − 1
ρ0
∂p
∂z −

ρ
ρ0
g +K

(
∂2w
∂x2

+ ∂2w
∂y2

+ ∂2w
∂z2

)

The continuity hypothesis in incompressible fluid case yield

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0.

u, v and w are the components of velocity, t, x, y, z are the cartesian
coordinates in a non-inertial reference frame; ρ and ρ0 are the density and
average density; p is the pressure; f is the Coriolis frequency and K is
the turbulent viscosity coefficient, assumed constant in space and time. It
was also assumed that viscous processes were approximated with Fick’s law.
However, an horizontal null-gradient condition is imposed in the lateral faces
of the water column (∂u∂x = 0 = ∂v

∂y and ∂v
∂x = 0 = ∂u

∂y ). Hence, continuity

oblige, ∂w
∂z = 0. Thus, assuming a nil bottom slope, we impose w = 0

at the bottom of the column; this implies w = 0 for all the points within
the water column (ultimately, the water level remains constant in time i.e.
∂η
∂t = 0). We now get the simplified Navier-Stokes equations from the above
hypothesis: 




∂u
∂t − fv = − 1

ρ0
∂p
∂x +K

(
∂2u
∂z2

)

∂v
∂t + fu = − 1

ρ0
∂p
∂y +K

(
∂2v
∂z2

)

∂p
∂z = −ρg

In a steady flow, the equations above become:




−fv = − 1
ρ0

∂p
∂x +K

(
∂2u
∂z2

)

fu = − 1
ρ0
∂p
∂y +K

(
∂2v
∂z2

)

By considering constant density, then, under the hydrostatic approximation,
pressure is merely a function of the water level; hence its horizontal varia-
tion is constant along the water column. Formalizing the last reasoning we
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obtain:

p(z) = patm + ρ0g (η(x, y)− z) ⇒
{

1
ρ0
∂p
∂x = g ∂η∂x(x, y)

1
ρ0
∂p
∂y = g ∂η∂y (x, y)

= const

By defining f vg ≡ −g ∂η∂x and f ug ≡ g ∂η∂y we arrive at the following differen-
tial equations set: 




−fv = −fvg +K
(
∂2u
∂z2

)

fu = fug +K
(
∂2v
∂z2

)

With boundary conditions given by u(0) = 0 = v(0), and u(z)ũg ∧ v(z)ṽg
when z → η. Solutions of the above equations can be given by, attending to
the boundary conditions:

{
u = ug − e−ξ (ug cos ξ + vg sin ξ)
v = vg + e−ξ (ug sin ξ − vg cos ξ)

with

ξ = z

√
f

2K
≡ z

DE
.

When equating the wind shear stress with the turbulent viscous term we get

1

ρa
(τ0x, τ0y) = K

(
∂u

∂z
,
∂v

∂z

)
(0) =

K

DE
(ug − vg, ug + vg)

The latter equation shows that the wind stress is northward when the
geostrophic component of the current velocity is North-Eastward (ug = vg).

The results of the vertical 30 m deep model, with 30 one-meter layers,
show the Ekman layer effect quite clearly, also the Ekman spiral appears,
though it cannot be well represented in the figure below. As it can be seen
in figure 3.1.1 the Ekman depth corresponds to about 10 meters which is

consistent with the expected theoretical value of DE =
√

2K
f 1̃0 m for values

of K = 0.001 m2/s (arbitrary value) and f = 1.024−4 Hz (adequate for
around 42◦ Lat). The time serie of the velocity modulus vertical profile is
illustrated for three cases: (a) without the coriolis force, (b) with coriolis and
constant turbulent viscosity, (c) with Coriolis and the GOTM k − ε model
parametrized according to Canuto et al. (2001a). The velocity modulus
shows a periodic oscillation of about 17.8 hours, which corresponds to the
Coriolis frequency at the studied latitude 42◦N. This value is confirmed by
the peak of the FFT analysis in figure 3.2. A significant difference is shown
between the GOTM turbulence model and the constant vertical viscous
coefficients in figure 3.2.
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Figure 3.1: Ekman spiral projected along the U-component of velocity, un-
der a constant wind forcing of 6 m/s, in a 30 layers and 30 meters depth
domain. The arrows indicate the intensity and direction of the U-component
of velocity. The color map indicate the velocity intensity.
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Figure 3.2: The four topmost panels are profile timeseries of the velocity
intensity for different test-cases of the same 30 layered model. The top left
panel represents a monthly profile timeseries excluding the Coriolis force in
the solved equations. The top right panel included the full one-dimensional
equation but with constant vertical turbulent viscous coefficients for the
same period. The middle left panel shows the same configuration but with
the GOTM turbulent model. The middle right panel displays a zoom-in in
time of the top-right panel, displaying a 2 day timeserie. The bottom panel
displays the timeserie FFT frequency spectrum for the vertical model results
with Coriolis force.
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3.1.2 Application to a test-case: PAPA station

Station PAPA (145◦W, 50◦N) is situated in a region where horizontal advec-
tion of salt and heat is small. Furthermore, meteorological data of long term
observations are available, as well as temperature profiles. Various authors
used these data to validate vertical turbulence models, authors such as the
makers of the GOTMBurchard et al. (2004). As MOHID uses the GOTM
code to calculate both, viscosity and diffusivity coefficients, this test-case
tries to reproduce the GOTM results from their experiment applied to the
PAPA station, as described in the GOTM manual, as a mean to validate the
vertical model. What was meant in the beginning, (to validate, by direct
comparison, one model with the other), turned out, in the end, to become
the exposure of an interesting feature known as the pressure correction effect
in the Brunt-Vaisalla frequency (Brunt, 1927) in the first hundred meters of
a stratified water column. This correction to the equation of state of sea-
density affects the Brunt-Vaisalla frequency enough to give rise to several
degrees of difference in the SST in this test-case. This is due to the fact
that the turbulence closure schemes employed by the GOTM make use of
the local stratification frequency in order to calculate the vertical viscous
coefficients. From the GOTM site (www.gotm.net) the required data for
the experiment was retrieved: the salinity and temperature profiles for the
initial conditions; the wind stress, the surface radiation, the latent heat, the
sensible heat and the infrared radiation for the surface forcing. We also
defined the same bottom and surface rugosity values, as well as the light
extinction coefficients for turbid waters of type II first described by Jerlov
(1968). As MOHID is intrinsically a tri-dimensional model, horizontal null-
gradients for all properties were imposed. As the bottom slope is null, by
continuity, there is no vertical advection during the experiment. In parallel,
the latest version of GOTM is compiled and is run with this test-case con-
figuration, to obtain results, exactly comparable with the MOHID results.
For both models are used a k-e model for the turbulent kinetic energy, with
stability functions described in Canuto et al. (2001a); the length scale is
calculated with a dynamic dissipation rate equation and no internal wave
parameterization was used. The preliminary results, with pressure correc-
tion in both models, for SST and temperature profile with time are found
to be quite different than expected, as can be seen in figure 3.3. These re-
sults clearly show an abnormal difference between the MOHID and GOTM’s
runs: accumulated heat in the upper layers in MOHID (lower left panel of
figure3.4) give a rise in the SST of nearly 3 degrees during summer (lower
right panel of figure3.4). Why is that so? In some references(Chapra, 1997),
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Figure 3.3: In the upper left panel: the temperature profile given by MOHID
with pressure correction. In the upper right panel: the temperature profile
given by GOTM v3 with pressure correction. In the lower left panel: the
experimental data temperature profile. In the lower right panel: the SST
given by GOTM, MOHID and in-situ data. All the isopleth are spaced of a
half degree between the extrema of the color scale.
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temperate lakes are defined as those with temperature above 4◦C in winter,
thermal gradients large, two circulation periods in spring and late autumn.
This describes the PAPA station situation; furthermore it is stated that
the thermal regime of those water columns is primarily the result of the
interplay of two processes: (1) heat and momentum transfer across the wa-
ter’s surface and (2) the force of gravity acting on density differences within
the water column. Thus, the wind tends to mix the water column, but
buoyancy effects tend to inhibit such mixing. Hence, the difference between
both models results could be explained, whether from heat or momentum
transferred at the surface, whether from buoyancy effects. To confirm the
heat fluxes balance and to test if both models were conservative, the heat in
the water column was integrated for both models and was compared to the
surface heat exchange. The results are shown in figure 3.4 and they show
that GOTM is clearly conservative, whereas MOHID is nearly conservative
(upper right panel of figure 3.4) with a slight gain in heat increasing up
to 5 : 1000 at the end of the year (lower right panel of figure 3.4). The
conservativity issue has to be investigated within MOHID, however we can
still conclude that, for the duration of the experiment, both models are
conservative as regards accumulation of heat without biasing the final con-
clusions. Since the conservation of heat is confirmed for both models, the
main hypotheses that are left to explain the differences, are those of the
conservation of momentum and of the buoyancy effects. The buoyancy gra-
dient is also known as the square of the Brunt-Vaisalla frequency. If we look
at the evolution of the Brunt-Vaisalla frequency in MOHID and in GOTM
(figure 3.5) we do find relevant differences. For instance we get exceeding
buoyancy gradients in the upper layers for the MOHID model compared to
GOTM. This is a major hint explaining the difference of the results shown
in figure 3.3. Exceeding buoyancy gradients in the upper layers in MOHID
would inhibit the mixing in the vertical columns while deficient buoyancy
gradients below the upper layers would increase the mixing. And these are
the results from the upper left panel of figure 3.3: an excess of temperature
in the upper layers of MOHID (possibly due to a deficient mixing) and,
below, a negative difference in temperature (possibly due to an excessive
mixing). But how can this be, if both models use the same UNESCO equa-
tion of state for density ρ = ρ(S, T, p)(Millero and Poisson, 1981; Millero
et al., 2008)? Furthermore, when both models are run with the UNESCO
equation of state ρ = ρ(S, T ), without the pressure correction, the obtained
results are presented in figure 3.6. The results are basically very similar.
They show differences (lower left panel of figure 3.6) along the region of the
thermocline, where the gradients in temperature are sharper. Also differ-
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Figure 3.4: In the upper left panel: the accumulated heat integrated in the
water column and the accumulation of heat exchanged at the surface. In
the upper right panel: the X-Y scatter plots of accumulated heat of GOTM
and MOHID versus the accumulation of heat exchanged at the surface. In
the lower left panel: the relative difference in heat between MOHID and
GOTM. In the lower right panel: the relative difference in heat of MOHID
and GOTM with the surface exchange.
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Figure 3.5: Evolution of the square of the Brünt-Vaisalla frequency in depth
over time. Upper left panel: results from MOHID. Upper right panel: results
from GOTM. Lower left panel: Differences of MOHID related to GOTM. In
all the panels, the extrema values are beyond the range of the color scale.
This is so in order to put in evidence the differences of patterns between
the results. Extrema values are (0, ¿0.01) for the upper left panel; (-0.002,
¿0.008) in the upper right panel and (-0.01, ¿0.01) for the lower panel. The
isopleth of the upper panels is set to 2E-4 s-2 and the isopleths of the lower
panel are set to -8E-4 and 8E-4.
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ences are found in the SST where the GOTM tends to point out some sharp
peaks that MOHID smoothes out, but that is all. In sum both models give
very similar results. When figure 3.6 is compared to figuree 3.3, the most
striking observation is that MOHID shows a high sensitivity to the pressure
correction factor, while GOTM doesn’t. Figure 3.7 shows the correspondent
buoyancy gradient of figure 3.6 results. Both buoyancy gradients are very
similar. What is the influence of the pressure correction in the buoyancy
gradient (i.e. the Brunt-Vaisalla frequency)? Is it relevant, like tends to be
pointed out by MOHID? Or is it irrelevant like shows GOTM? The square
of the buoyancy gradient is usually given by

{
N2(S, T, p) = g

ρ0

∂ρ(S,T,p)
∂z

N2(S, T ) = g
ρ0

∂ρ(S,T )
∂z

as seen in Cushman-RoisinRoisin (1994), depending if the equation of state
(EOS) depends on pressure (depth) or not. Now, if we compare MOHID
results with the experimental data from the PAPA station, as can be seen in
figures 3.3 and 3.6, only the non-pressure correction model run gives realistic
results; particularly in the SST of figure 3.6, where the fit is more accurate
than for GOTM’s results, as the sharp peaks that appear for GOTM van-
ish in the experimental data. As pointed out in GOTM’s manual, the sea
surface temperature maximum is exceeded by over 2◦C for all parameter-
izations except when using the Kantha and Clayson (1994) internal wave
parameterization. This is the case of the upper panel of figure 3.6. This
overestimation was estimated to be due to the numerical scheme character-
istics as pointed out in the GOTM manual. It was also suggested by Large
et al. (1994) that a change from turbid waters of type II to type Ia could
cause a change of about 1◦C in the maximum SST. After day 230, the SST
is decreasing much more slowly in both models. This was already pointed
out in the GOTM manual. This discrepancy is due to the winter advection
in the seasonal thermocline and its subsequent mixing into the mixed layer
as discussed by Large et al. (1994).

A note about the GOTM coding for the Brunt-Vaisalla frequencyBrunt
(1927): when discretizing equation (3.1) the GOTM code performs

b(Si+1, Ti+1, pi+1)− b(Si, Ti, pi+1)

∆zi+1

where b is the buoyancy. Clearly, the pressure correction effect in the buoy-
ancy is, thus, nullified. This explains the results: the pressure correction
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Figure 3.6: In the upper left panel: the temperature profile of MOHID
without the pressure correction. In the upper right panel: the temperature
profile of GOTM without the pressure correction. In the lower left panel:
the temperature profile of in-situ data. In the lower right panel: the Sea
Surface Temperature of MOHID, GOTM without the pressure correction
and in-situ data. All isopleths spaced of half degree between the extrema of
the color scale.
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Figure 3.7: The square of the Brünt-Vaisalla frequency. In the upper left
panel: the result of MOHID without the pressure correction. In the upper
right panel: the result of GOTM without the pressure correction. The
isopleth is of 2E-4 s-2. In the lower panel: the differences between MOHID
and GOTM with isopleths of -1E-4 and 1E-4 s-2.
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becomes thus essentially nullified once the buoyancy of a water parcel fol-
lowing its lagrangian perturbatory trajectory is considered sufficiently slow,
relatively to pressure waves, so that it’s inner temperature and salinity re-
main constant. Thus, it’s temperature and salinity remain the same, but it
adjusts its pressure to the surrounding pressure (adiabatically). Historically,
the parameterizations for the turbulence models were made with simpler and
linearized density equations, subsequent changes and corrections were added
to the state equation. Hence what, then, would provide good results, now,
gives poor results as the pressure correction was added in the state equa-
tion. The conclusions of this test-case in trying to reproduce the results
from GOTM applied to the PAPA station are essentially: (1) The MOHID
vertical 1D model reproduces well the GOTM results without pressure cor-
rection, it reproduces even better than GOTM the SST when comparing
with the experimental data as some noisy peaks appearing in GOTM clear
out with the MOHID model. However, the MOHID model shows a slight
tendency in gaining heat (5 : 1000 at end of the run). It would be best
to investigate further the heat gain. (2) The pressure correction turns out
to represent a relevant correction for mixing issues as the heat distribution
during the run is clearly different. This is because the buoyancy gradient
was wrongly calculated:

b(Si+1, Ti+1, pi+1)− b(Si, Ti, pi)

∆zi+1
.

This is the direct implementation of the Roisin (1994) buoyancy gradient
equations, and it’s conceptually wrong.

Problem with the stratification frequency

While trying to reproduce the PAPA station test-case GOTM results with
MOHID, we tumbled into a different conception of the Brunt-Vaisalla fre-
quency when using the pressure correction to the UNESCO (Millero and
Poisson, 1981; Millero et al., 2008) density EOS (Roisin, 1994). The origi-
nal version in MOHID was

N2 = − g

ρ0

∂ρ

∂z
(3.1)

which is the same formula stated in Roisin (1994) It worked fine without the
pressure correction on the EOS. However, turning the pressure on caused
an extra stratification leading to differences over 3 degrees in the SST of the
PAPA station test-case. This work pin-points exactly why. Furthermore,
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this work suggests that different stratification frequencies exist, one for each
fluid present within the medium. This has direct implications in the evalu-
ation of the stratification frequencies for tracers other than temperature.

3.1.3 Review of the state-of-the-art on static stability

Mellor (1996) introduces a new density gradient ”suitable” for static stability
i.e a ”suitable” Brunt-Vaisalla frequency:

∂ρ̃

∂z
≡ ∂ρ

∂S

∂S

∂z
+
∂ρ

∂Θ

∂Θ

∂z
(3.2)

N2 ≡ −g
ρ

∂ρ̃

∂z
(3.3)

where the term ∂ρ
∂p

∂p
∂z in eq. (3.2) is excluded because

Physically one excludes the change in density a particule under-
goes by an adiabatic change in depth and pressure; it is only non-
adiabatic differences that are important to stability. G.M. (Mel-
lor, 1996)

If we use the hydrostatic approximation ∂p
∂z = −ρg and if we set ∂ρ

∂p = c−2

where c is speed of sound in the medium, then we obtain ∂ρ
∂p

∂p
∂z = −ρg

c2
.

∂ρ

∂z
=
∂ρ

∂S

∂S

∂z
+
∂ρ

∂Θ

∂Θ

∂z
+
∂ρ

∂p

∂p

∂z
=
∂ρ̃

∂z
− ρg

c2
(3.4)

Thus the Brunt-Vaisalla frequency becomes, according to G. Mellor

N2 ≡ −g
ρ

∂ρ̃

∂z
= −g

ρ

(
∂ρ

∂z
+
ρg

c2

)
= −g

ρ

∂ρ

∂z
+
g2

c2
(3.5)

He also states that

Another good approximation is ∂ρ̃
∂z = ∂ρΘ

∂z . Thus the potential
density function can be used to determine horizontal density gra-
dients which drive horizontal motions and vertical density gradi-
ents which govern vertical mixing. (Mellor, 1996)

where ρΘ ≡ ρ (S, Θ). POM uses eq. (3.5) to calculate its N2.
Hallberg (2005) defines

N2 = − g2

α2

(
dα

dp
− ∂α

∂p

∣∣∣∣
Θ, S

)
(3.6)
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where α is the specific volume or thermal expansion coefficient.
Kantha and Clayson (2000) define:

N2 = gα

(
Γ +

dT

dz

)
− gβ

dS

dz
(3.7)

where α ≡ 1
ρ
∂ρ
∂T

∣∣∣
p, S

, β ≡ 1
ρ
∂ρ
∂S

∣∣∣
p, T

are the thermal expansion and haline

contraction coefficients and where

Γ ≡ − dT

dz

∣∣∣∣
σ

= g vs T/cp (3.8)

is the adiabatic lapse rate, vs being the specific volume (Mcdougall and
Feistel, 2003).
The latter expression is equivalent to the following one, in terms of potential
temperature

N2 = g

(
α
dΘ

dz
− β

dS

dz

)
(3.9)

as was suggested by Eden and Willebrand (1999) or by Mcdougall et al.
(2003). MOM4 uses the Accurate and computationally efficient algorithms
of Mcdougall et al. (2003). ROMS uses the Jackett and Mcdougall (1995)
EOS algorithm. It seems relevant to use potential temperature to calculate
buoyancy effects in the stratification since it includes the adiabatic lapse
rate effect.

3.1.4 The principle of Archimedes

It will be shown that equations (3.5), (3.6), (3.7) and (3.9) under the hydro-
static approximation, are equivalent, within a certain approximation, to a
more generic and physically simpler to understand definition of static stabil-
ity. It relies solely on the principle of Archimedes when small disturbances
are applied to a Test Material Volume (TMV) at rest in a stably stratified
fluid. The system and its axis is represented in figure 3.8.
The principle of archimedes states that the buoyant restoration force is equal
to the weight of the dislocated volume of the surrounding environment.
Hence if a TMV is dislocated from rest along the vertical in a stably strati-
fied fluid, it will feel the buoyant restoration force driving him back towards
his rest position. Putting it in equations this gives:

ρ̃ z̈ = −ρ̃ g + ρ g,

z̈ = g
ρ− ρ̃

ρ̃
, (3.10)

z̈ = −g′, (3.11)

82



3.1. IMPLEMENTING A 1D VERTICAL MODEL IN MOHID

where the˜stands for the TMV state variables, thus ρ̃ is the TMV’s density,
ρ is the fluid’s density, g is the local gravity acceleration, g′ ≡ g ρ̃−ρρ̃ is
the reduced gravity, z is the TMV vertical position coordinate and z̈ is the
TMV local vertical acceleration. Thus equation 3.10 gives the perturbation
motion of any TMV at rest, embedded in any stably stratified environment,
according to the principle of Archimedes. Depending on the composition
of the constituents of the TMV and of the enviroment, the perturbation
motion can quite complex as the evolution of the thermodynamic properties
of the constituents can be highly non-linear. Nevertheless, a sound physical
intuition would yield, to a first order of approximation, that the motion
due to small perturbations around the rest position would be oscillatory,
similar to the harmonic oscillator motion. The differential equation of the
oscillatory motion is linear, and is given by Hooke’s law

z̈ = −ω2 z, (3.12)

where ω
2π is the oscillation frequency (in Hz). Hence, the square of the

angular oscillation frequency is found by taking the vertical derivative of
equation 3.12 at the rest position, i.e.

ω2 = −dz̈
dz
. (3.13)

Hence, approximating the motion of the TMV perturbed from its rest posi-
tion given in equation 3.10 to Hooke’s law in equation 3.12 yields

ω2 = −g d
dz

(
ρ− ρ̃

ρ̃

)

= −g
ρ̃

dρ

dz
+
g ρ

ρ̃2
dρ̃

dz

= −g
ρ

d (ρ− ρ̃)

dz
, (3.14)

which is a generic frequency of oscillation. It must be noted that the deriva-
tive was taken at the position of rest where ρ̃ = ρ. A particular case of
equation 3.14, envolving air parcels and water parcels disturbed from rest,
was first considered by Brunt (1927) and its frequency was called the Brunt-
Vaisalla frequency.
The TMV could be any material where the thermodynamic’s laws are valid.
Let us undertake the following mental experience: consider a cork of den-
sity higher than surface seawater at rest in a stable stratified water column.
Now consider a small vertical disturbance of it’s mean rest state. Clearly,
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the restoring buoyant force will be equal to the balance between the cork
and the displaced water weights (or densities) i.e. Fb = ∆ρg. Since the
cork’s density is the same of the surrounding medium when at rest, we can
state that buoyancy is proportional to the density’s vertical gradient and
that that a normalized measure of the effect of buoyancy is

1

ρ0

∂ρ

∂z
(3.15)

where ρ is the medium’s density and ρ0 a reference density (e.g. the cork’s
density). This leads to equation (3.1).
However, when considering displacements of water parcels, these parcels no
longer behave like a cork. They undergo expansion and contractions of their
volume or they could exchange mass, heat etc... Thus, when applying a
disturbance to a generic TMV, one has to enter into consideration its own
density variations (albeit adiabatic and isentropic - i.e. reversible), Dρ̃.
This wasn’t required for the cork, because the cork had not any density
variations. This is not the case for a generic TMV embedded in a given
medium. The principle of Archimedes remains unchanged, and the generic
measure of the buoyancy effect in a stably stratified fluid, called the square
of the Brunt-Vaisalla angular frequency, is written as

N2 = − g

ρ0

(
dρ

dz
− dρ̃

dz

)
, (3.16)

following equation 3.14. Equation (3.16) is completely generic, has no ap-
proximations, is original, should be considered as the de facto adequate
squared stratification frequency and yields the following discretization:

N2
i = − g

ρ0

(
ρ (Θi+1, Si+1, pi+1)− ρ (Θi, Si, pi)

zi+1 − zi
(3.17)

−
ρ̃
(
Θ̃i, S̃i, p̃i+1

)
− ρ̃

(
Θ̃i, S̃i, p̃i

)

zi+1 − zi


 (3.18)

where i, indexes the state of rest and i + 1, the perturbated state. If the
TMV is incompressible and has no material variation of its density (like a
cork), then equation (3.16) reduces to the original equation (3.1). We still
need to relate, somehow, the TMV’s density with the exterior density in
order to make some use of eqs.(3.16) and (3.17). Figure (3.8) illustrates the
perturbation applied to a seawater TMV initially at rest. It undergoes an
adiabatic transformation and conserves its mass, hence only the pressure
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Figure 3.8: Illustration of an adiabatic and isohaline transformation of a
seawater TMV, from a state of rest, to a perturbated state, away from
equilibrium. The transformation is slow enough, so that compression forces
have time to restore the pressure inside the TMV along the way.
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changes. How does the pressure changes? Well, it changes between its
original value and the exterior value, it can even fluctuate in time. Thus we
need another assumption:

∆h

∆t
� cs. (3.19)

where cs is the sound of speed. This allows the TMV to adiabatically adjust
its inner pressure to the surrounding pressure as the speed of sound is far
greater than the speed of the transformation. Hence, under this assumption,
p̃ = p all along the transformation (see figure 3.8). Furthermore, if it’s a
seawater TMV, then Θ̃i = Θi, S̃i = Si and the discretized eq.(3.16) simplifies
to

N2
i = − g

ρ0

(
ρ (Θi+1, Si+1, pi+1)

zi+1 − zi
− ρ (Θi, Si, pi+1)

zi+1 − zi

)
. (3.20)

This discretization is equivalent to the one used in GOTM, and, now, in
MOHID. Also, in the absence of pressure correction, (3.20) reduces to the
discretized form of (3.1).

3.1.5 The equivalence of the interpretation

Let us show the equivalence between this interpretation of the Brunt-Vaisalla
frequency and Mellor’s:

The variation of ρ̃ = ρ̃
(
Θ̃, S̃, p̃

)
along a path s parameterized by t is stated

in the material derivative

Dρ̃

Dt
=

∂ρ̃

∂Θ̃

DΘ̃

Dt
+
∂ρ̃

∂S̃

DS̃

Dt
+
∂ρ̃

∂p̃

Dp̃

Dt
(3.21)

=
dρ̃

ds

ds

dt
(3.22)

The line path is vertical, the thermodynamical process is adiabatic (dσ̃ = 0)
and mass conservative (DS̃ = 0). Consequently, DΘ̃ = 0. Thus equation
(3.21) simplifies and writes

dρ̃

dz
=
∂ρ̃

∂p̃

Dp̃

Dt

(
dz

dt

)−1

(3.23)

The variation of the residual scalar field ρ = ρ (Θ, S, p) along a path s per
line element ds, is stated as

dρ

ds
=
∂ρ

∂Θ

dΘ

ds
+
∂ρ

∂S

dS

ds
+
∂ρ

∂p

dp

ds
. (3.24)
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In this case, it rephrases as

dρ

dz
=
∂ρ

∂Θ

dΘ

dz
+
∂ρ

∂S

dS

dz
+
∂ρ

∂p

dp

dz
. (3.25)

Equations (3.21), (3.23) and (3.25) give the correct Brunt-Vaisalla frequency
stated in eq.(3.16). If we choose the adiabatic path, slow enough compared
to compressibility forces (dzdt << cs, where cs is the medium’s sound speed),
such that the inner pressure from the TMV always balances the medium’s
pressure, then Dp̃

Dt =
dp
dt would hold, and eq.(3.23) would simplify under the

hydrostatic approximation to

dρ̃

dz
=
∂ρ̃

∂p

dp

dz
= −ρg

c2s
(3.26)

where cs is the speed of sound in the TMV. It is, approximately, the speed
of sound in the medium.
The Brunt-Vaisalla frequency then writes

N2 = −g
ρ

∂ρ

∂z
+
g2

c2s
(3.27)

which is the same as equation (3.5). Q.E.D.
An alternative demonstration was already described by Mellor in the ap-
pendix of POM user’s guide (Mellor, 1992).

3.1.6 Discussion

The assumptions are the Archimedes principle and the adiabatic, isohaline
perturbation with pressure equilibrium along its path. The concept is clear
and simple. It clearly implies that in-situ temperatures need to be corrected
for potential ones, because of the adiabatic lapse rate effect. Also the use of
the potential density without pressure correction seems indeed a very good
approximation, as was already pointed out by Mellor. Of all the codes avail-
able for the calculation of the Brunt-Vaisalla frequency (GOTM, ROMS,
POM, MOM4, MOHID), the GOTM’s approach seems the more direct-to-
the-physics. Because it is so simple it is probably the one that introduces
less round off errors. The others relate to the alternate equations reviewed
in this work. The GOTM implementation of the Brunt-Vaisalla frequency
has been since successfully implemented in MOHID. Now, since 2005, the
GOTM and the MOHID results of the PAPA station case-study are nearly
identical, both with use of correction of pressure or without.
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3.2 The freshwater cylinder test-case

3.2.1 Objectives

To assess the reliability of Mohid in coastal simulations, we performed a
classic well-known and well-described numerical experiment: the rotating
freshwater cylinder experiment. We used the conditions of the Tartinville
et al. (1998) experiment. We studied the formation of fronts, barotropic
and baroclinic instabilities, the evolution of energy and of enstrophy of the
system.

3.2.2 Description

The physical system to simulate is a square basin of constant depth with
salty water under rotation. In the middle of the basin there is a cylindrical
volume of less haline water.

The forces that apply to this cylindrical volume of water are: the buoy-
ancy, a vertical force applied to the cylinder of lesser dense water which
results of the balance from the gravity force and the vertical pressure gradi-
ent; and the horizontal pressure gradient due to the horizontal variation of
density.

∫
d (ρ~v)

dt
dV =

∑
~F

∑
~F =

∫
(ρ~g) dV+

∫ (
−~∇p

)
dV+ . . .

Under these forces alone, the cylinder would simply emerge and spread
over to the surface. The horizontal pressure gradient term separates itself
into two modes: the external mode (giving birth to the barotropic force)
and the internal mode (giving birth to the baroclinic force),

−p(z) =
∫ η

z′=z
(ρ− ρ0) g dz

′ + ρ0 g (η − z)

−∂p
∂x

(z) =
∂

∂x

(∫ η

z′=z
(ρ− ρ0) g dz

′
)

︸ ︷︷ ︸
baroclinic force

+ ρ0 g
∂η

∂x︸ ︷︷ ︸
barotropic force

An analysis of the initial condition of the system tells us that the density
gradient has an inwards azimuthal symmetry, where the azimuthal axe is the
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Figure 3.9: freshwater cylinder, pressure gradient and gravity forces.

cylinder’s. The baroclinic force is nil at the surface and grows with depth
as a result of the vertical integration. On the other hand, the level gradient
is constant throughout the water column. Hence, if we release the system,
the freshwater cylinder’s bottom will be compressed inwards and pushed
upwards by the baroclinic force and impulsion; this will immediately raise
the water level of the freshwater cylinder, which in turn, will create an
outwards barotropic force. The barotropic force will find herself unbalanced
near the surface and will start spreading radially the freshwater. Near the
bottom of the cylinder, where the baroclinic force is higher, the latter will
overcome of the former and continue compressing inwards the freshwater
cylinder (see figure 3.9). On top of that, a Coriolis acceleration exists due
to the system’s rotation which is perpendicular to the fluid flow. This tends
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to create vortices.

. . . + 2 ~Ω × ~v =

∫
(ρ~g) dV+

∫ (
−~∇p

)
dV+ . . .

The experiment neglects surface or bottom stresses. It also neglects
viscous terms, though it is present in the form of numerical diffusion.

Since the flow is divergent at the surface, the vortices will be anti-
cyclonic; conversely, since the flow is convergent at the base of the cylinder,
the vortices will be cyclonic.

The convergent/divergent structure creates an upward flow. The whole
process will oscillate around geostrophic balance.

Co-rotating and counter-rotating vortices will appear around the central
eddy produced by barotropic or baroclinic instabilities. These instabilities
result from sheared currents near the density front and energy transfers from
the average kinetic energy (KE) to the perturbation kinetic energy (KE′)
and from the average available potential energy (Lorenz, 1955) (APE) to
KE′ for barotropic and baroclinic instabilities, respectively, where KE =
KE + KE′ and APE = APE + APE′ (i.e. both kinetic and available
potential energy are separated in geostrophic and perturbed components).

In short, the barotropic process will generate a clockwise central eddy
and anti-clockwise co-rotating eddies; while the baroclinic process will gener-
ate an anti-clockwise central eddy with clockwise co-rotating eddies(Tartinville
et al., 1998). As a result, a mix of barotropic and baroclinic instabilities ap-
pears at all depths, while the central eddy remains barotropic at the surface
and baroclinic at the bottom of cylinder.

Laboratory setups of this experiment show that 2nd order baroclinic and
barotropic instabilities occur (2 secondary vortices around the center) and
tend to grow. Pedlosky (1969) conjectured a law based upon the internal
Rossby radius of deformation and the ratio of the cylinder radius with its
depth that predicted the creation of baroclinic instabilities. It states that
baroclinic instabilities should arise whenever the squared ratio of the cylin-
der radius versus the internal Rossby radius is higher than

√
2. This is the

case in this experiment.

Pedlosky (1967, 1969) also suggests that, since the vortices are equally
distributed around the cylinder’s perimeter, the radius of the vortices pro-
duced times their order scales with the cylinder’s radius. I.e:

R− fwc ∝ nR− v

Tartinville et al. (1998) advances that the order of the baroclinic instabilities
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should scale with the inverse of the Froude number:

n ∝
√
g′ h′

U
,

where g′ is the reduced gravity, h′ is the freshwater cylinder depth and U is
the characteristic intensity of flow velocity.

Roisin (1994) demonstrates that θ ≡ KE
APE

, the ratio of kinetic energy
versus available potential energy in geostrophic balance, is proportional to
the squared Froude number:

θ ∝ U2

g′ h′

Hence the order of the instability is related with θ by:

n ∝ θ−1/2 (3.28)

Tartinville et al. (1998) also shows that the growth rate of the most unstable
baroclinic mode in geostrophic balance is proportional to the Froude number:

ω ∝
√
θ (3.29)

Equation (3.28) and equation (3.29) were developed in order to explain
Tartinville et al. (1998) results based on the geostrophic kinetic and potential
energy. It is the scope of this report to use these equations to predict
qualitative results and, thus, to assess the validity of the former.

3.2.3 Model setup

The setup of the Tartinville et al. (1998) experiment is identical to the one
tested with MOHID (table 3.2.3).

Exactly the same setup than Tartinville et al. (1998) was used.

3.2.4 Battery tests

The experience will be conducted in two main steps:

• The first step consists in assessing the optimal missing parameters.

• The second step consists in testing the several advection schemes using
the optimal parameters determined in the first step.

The following methodology was adopted:
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Table 3.1: Description of the model setup

Domain
Parameter Value Observations

Depth 20 m
Size 30 x 30 km without relax-

ation zone
latitude 52oN
Coriolis 1.15 × 10−4 s-1
hor. res. 1 km
layers 20 levels

Cylinder
Depth 10 m
Radius 3 km

Initial condition
Salinity S = 1.1∗ (d/3)8+

33.75
d is the cylinder
radius.

Temperature 20◦C Constant.

Equation of state
linear ρ = 1025 + 0.78 ∗

(S − 33.75)

Simulation time
Duration 6 days

Vertical boundaries
Bottom stress none
Surface stress none

Viscosity and diffusivity
Vertical none or minimal
Horizontal none or minimal

Open boundary
Momentum null-gradient
Water-level four-points-wide

relaxation to zero
coefficients of
1, 0.5625, 0.25,
0.0625

Salinity four-points-wide
relaxation to
34.85

coefficients of
1, 0.5625, 0.25,
0.0625
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Table 3.2: Battery of time increment tests

Run ID Time step (s) Observations

1 600 Unstable
2 300 Good
3 150 Good
4 60 Good

1. First, the time increment below which there are no significant varia-
tions of the system was determined using a total variation diminishing
(TVD) advection scheme.

2. Double precision was enforced so that it would increase the accuracy
of the results when compared to single precision.

3. Several vertical coordinates available by Mohid were used (Cartesian,
Sigma and Lagrangean) to determine which one minimizes numerical
diffusion whilst not introducing too many errors.

4. Flather (1976) level radiation scheme alone was tested as an alternative
to the use of flow relaxation schemes (FRS)(Martinsen and Engedahl,
1987) to see if it improves the quality of the results from the best
configuration taken from above.

5. Finally, from the best configuration above, several methods for the
calculation of the baroclinic force were tested. The best method is
the one that minimizes the pressure gradient error (Beckmann and
Haidvogel, 1993). The pressure gradient error is known to generate
spurious vertical velocities in terrain following grids (Beckmann and
Haidvogel, 1993).

The time increment was chosen accordingly to the computing available
resources while the outputs yield stable results. The open boundary con-
ditions are fully compliant so that the experiment may be compared with
the Tartinville et al. (1998) benchmark. The second step is taken and a
battery of the available advection schemes was tested (table 3.2.4). Some of
them are similar to those employed in the models tested by Tartinville et al.
(1998) (table 3.2.4).
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Table 3.3: Battery of precision tests

Run ID Precision

single Single precision
double Double precision

Table 3.4: Battery of vertical discretizations tests

Run ID Vertical coordinate

cartesian Cartesian
sigma Sigma
Lagrangean Lagrangean

Table 3.5: Battery of pressure gradient error tests (Sigma mesh only)

Run ID Baroclinic force method

uniform Uniform
linear Linear
leibniz Leibniz
leibniz2 Leibniz2

Table 3.6: Battery of advection schemes tests. The first number is the
advection scheme ID. The second number (optional) is the ID of the TVD
type of scheme. Both numbers seen in table 3.2.4

Run ID Momentum Salinity
horizontal vertical horizontal vertical

1 1 1 1 1
2 2 4/4 2 4/4
3 3 4/4 3 4/4
4 4/4 4/4 4/4 4/4

5 MU 1 1 4/4 4/4
6 DE 2 5 3 1
7 CL 5 1 5 1
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Table 3.7: ID numbers of advection schemes and of TVD schemes (variants
of the TVD).

Advection ID TVD ID

Upwind 1 MinMod 1
Upwind2 2 VanLeer 2
Upwind3 3 Muscl 3
CentralDif 4 SuperBee 4
TVD 5 PDM 5

Table 3.8: Numerical models and their advection schemes, as tested by
Tartinville et al. (1998).

Models Momentum Salinity
Horizontal Vertical Horizontal Vertical

CL SAHS Upwind SAHS Upwind
DE SI Upwind 2nd SI Upwind
IF Quickest Quickest Quickest Quickest
MU Upwind Upwind TVD TVD
PO PPM PPM PPM PPM

3.2.5 Results

The results from the runs will mainly be the volume integrated conserved
quantities such as energy and enstrophy, and the surface section with hor-
izontal currents and with isohalines. The former type of results will allow
us to stipulate if the model is stable and conservative, while the latter type
will allow a more visual interpretation of the simulated process concerning
the vortices formations and the influence of the open boundaries.

Opimizing numerical parameters

As can be seen from the results (figure 3.2.5 and 3.2.5) the system doesn’t
show sensitivity to time increment. The changes for KE, PE and Enstrophy
are inferior to 1The changes in the UV current field at the surface at 144
h are more intense currents at the surface for the highest time resolution,
while the lowest time-resolution shows currents less intense. Since the KE
is the same for both time increments, this means that speed is differently
distributed throughout the volume. This difference in distribution is a result
of lower numerical diffusion for higher time-resolution schemes. However the
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Figure 3.10: Model results after 6 days run. The color scale represents the
velocity intensity and the isohalines are spaced by 0.15. On the left panel is
the test result with a time-step of 60s. On the right panel is the test result
with a time-step of 300s.

difference isn’t significant as it doesn’t changes the order of the instabilities.
Hence, the lowest time resolution is chosen, as it is the less machine-time
consuming: 300 s.

Using single or double precision does give some difference in the volume
integrated properties (figures 3.2.5 and 3.2.5). However, in the currents
field at 144 h, no sensitivity to precision was found. Sensitivity in precision
means, sensitivity to round-off errors during numerical calculations. Obvi-
ously, the numerical calculations during an integral calculus cumulates the
round-off errors, thus the difference shows more in the integrated properties.
Indeed these are less than 10% of the maximum variability of the integrated
properties and less than 0.1% when compared to referenced values. These
are nonetheless low differences and are irrelevant for the general behaviour
of the system. In particular, the models of Tartinville et al. (1998) yield
higher differences than those found between the single precision tests and
the double precision tests. Hence, for the sake of resource management, the
single precision was adopted.

Three types of vertical coordinates were tested: Z-level, Sigma and La-
grangean coordinates. The z-level (generalized cartesian) and the sigma
coordinates are classic and well described(Semtner, 1974; Cox and Bryan,
1984; Haidvogel and Beckmann, 1999). The Lagrangean coordinate delimits
the layers with isobaric surfaces and, thus, evolve with time. A description
can be found in the thesis of Martins et al. (1998). The terrain-following
coordinate (sigma) give results identical to the geopotential following coor-
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Figure 3.11: Potential Energy, Kinetic Energy, Enstrophy and Salinity ex-
trema for runs with several time increments of 60s, 150s and 300s.

Figure 3.12: Surface currents after 6 days of simulation. The colour scale
maps velocity intensity. The vector field represents the velocity field. On
the left panel, single precision results. On the right panel, double precision
results.
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Figure 3.13: Potential Energy, Kinetic Energy, Enstrophy and Salinity ex-
trema for runs with single (pink) and double (blue) precision.
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dinate (cartesian). This is expected since there are no bottom topographical
gradients. However the Lagrangean coordinate does present better defined
salinity lobes and better developed vortices at the end of the simulation (144
h).

Two runs were performed for the Lagrangean coordinate: one with a
FRS at the boundaries and the other with level radiation instead. The
Lagrangean run gives different results than non-Lagrangean runs in terms
of salinity lobes and surface vortices: they are sharper and better developed.
This is explained because the Lagrangean coordinate follows level variations
and, hence, inhibits numerical diffusion. Unfortunately, the Lagrangean
scheme is not mass nor volume conservative and a bias trendline appears in
Mass, Volume and Level evolutions for the two types of border conditions
which are not acceptable for the sake of realism. Hence, since the Lagrangean
scheme also fails in showing other orders of instabilities, the choice relies
between sigma and cartesian.

An interesting remark from these results regarding the differences be-
tween radiation and relaxation schemes: relaxation requires longer time of
spin-up before the model stabilizes in terms of conserved quantities such as
Mass, Volume or Level, while radiation condition makes the run converge
a lot sooner; however, regardless of the methods, the run stabilizes to the
same values of Mass, Volume and Level. For the Lagrangean coordinate,
the KE and the Enstrophy tend to grow at the end of the run. The growth
is higher for the relaxation condition. This is a typical path to instability.
Hence, we can assume for this experiment that the radiation condition is
more robust than the relaxation condition in terms of stability.

As for the choice between Z-level and Sigma coordinates, both coordi-
nates are nearly identical, but in the integrated properties, Sigma appears
as the less diffusive coordinate because it yields a higher Enstrophy, a lower
salinity minimum and a higher KE. Hence the choice goes to sigma.

We tested four ways to calculate the baroclinic force. The four ways
are Linear, Uniform, Leibniz and Leibniz2. From the currents figures, no
visual changes appear. The KE however does show a higher variation for the
Uniform and Linear methods, although it isn’t of relevance for the qualitative
dynamical results. In this experiment clearly the methods seem identical
(except for the KE) hence the standard method, Leibniz2, was chosen.

Fixing the missing parameter’s values according to table 8, the runs de-
fined in table 3.2.4 were made, thus testing the several available advection
schemes. The results of surface currents and isohalines, and of volume inte-
grated KE, PE, Enstrophy and salinity maxima are displayed in figures 3.2.5
to 3.2.5. The Tartinville et al. (1998) results of integrated quantities are dis-

99



CHAPTER 3. DISCRETIZING AND MODELING THE PHYSICS OF
FLUIDS

Figure 3.14: Surface currents after 6 days. Cartesian coordinates in the left
panel and sigma coordinates in the right panel.

Figure 3.15: Surface currents after 6 days. No level radiation was imple-
mented in the left panel. Flather level radiation was implemented in the
right panel.

Table 3.9: Optimal numerical parameters summary

Parameter Optimal value

Time-step 300 s
Precision Single
Vertical coordinate Sigma
Baroclinic force Default
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Figure 3.16: Potential Energy, Kinetic Energy, Enstrophy and Salinity ex-
trema for runs with Cartesian, Sigma and Lagrangean w/o radiation coor-
dinates.
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Figure 3.17: Timeserie of the perturbation of initial mass, volume and level
for runs with Cartesian, Sigma, Lagrangean (w/ FRS) and Lagrangean (w/
radiation) coordinates.
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Figure 3.18: The top panels are showing surface currents. The bottom
panels are showing 10 m depth currents. All results are shown after 6 days
of simulation. The left panels display the uniform method to calculate the
baroclinic force. The right panels display the linear method.
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Figure 3.19: The top panels are showing surface currents. The bottom
panels are showing 10 m depth currents. All results are shown after 6 days
of simulation. The left panels display the Leibniz method to calculate the
baroclinic force. The right panels display the Leibniz2 method.
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Figure 3.20: Potential Energy, Kinetic Energy, Enstrophy and Salinity ex-
trema for runs with uniform, linear, Leibniz or Leibniz 2 methods for calcu-
lating the horizontal density gradient.
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Figure 3.21: Surface currents and isohalines after 6 days run. Left panel,
upwind first order scheme, right panel, upwind 2nd order scheme.

Figure 3.22: Surface currents and isohalines after 6 days run. Left panel,
upwind third order scheme, right panel, TVD superbee scheme.

played in figure 3.2.5 in order to compare them directly with our model’s
results.

All advection schemes yielded 4th order instabilities, while they were
supposed to yield 2nd order as shown by real experiments(James, 1996).
This is a numerical problem. Tartinville et al. (1998) and Burchard (1999)
also had 4th order instabilities. Burchard (1999), that mounted a simi-
lar experiment as Tartinville et al. (1998) and that even refined the grid,
suggests that it is the square grid that triggers the 4th order instabilities.
Tartinville et al. (1998), who developed a more profound study on the cause
of the instabilities order, state that the difference of number, growth rate
and type of instabilities between models rely on the influence of the numer-
ical methods on the energy budget i.e. the transfer of to and from to for
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Figure 3.23: Surface currents and isohalines after 6 days run. Left panel,
scheme equivalent to MU in Tartinville et al. (1998), right panel, scheme
equivalent to DE in Tartinville et al. (1998).

Figure 3.24: Surface currents and isohalines after 6 days run with a scheme
equivalent to CL in Tartinville et al. (1998).
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Figure 3.25: Potential Energy, Kinetic Energy, Enstrophy, Salinity extrema,
total mass, total volume and level for runs of ID 1, 2, 3, 4, 5, 6 and 7 as
described in table 3.2.4.
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Figure 3.26: Potential Energy (in 109 J), Kinetic Energy (in 109 J), En-
strophy (in m3/s2), surface area with one percent less salinity than ambient
value (in 108 m2) and Salinity extrema (in psu). CL gets a circle; DE gets a
square; IF gets a diamond; MU gets a triangle and PO gets a star. Courtesy
of Tartinville et al. (1998)
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barotropic and baroclinic instabilities, respectively. Tartinville et al. (1998)
enumerates four possibilities to such cause: the grid staggering, the open
boundary conditions, the salinity advection scheme and the horizontal mo-
mentum scheme. But his conclusions are that the horizontal momentum
advection scheme is the factor of influence on the number of the instabilities
while other factors such as staggering and salinity advection can affect the
energy ratio and hence influence the growth rate and the type of instabilities.
In this work, it is seen that the vertical coordinate is another candidate to
create differences in the growth rate. From the analysis of the figures of the
different advection schemes (figures 3.2.5 to 3.2.5), although they all show
fourth-order baroclinic instabilities, different shapes and growth of vortices
appear as well as isohaline lobes. The upwind schemes show the less de-
veloped vortices and the less developed isohaline lobes (figures 3.2.5 and
3.2.5 ). The TVD based schemes tend to produce better developed vortices
and lobes (figure 3.2.5). The DE and CL schemes (figures 3.2.5 and 3.2.5)
show the best developed vortices, and isohalines lobes; but the less defined
central eddy. The most diffusive schemes, such as in run 1 and run 5-MU
(figures 3.2.5 and 3.2.5), yield the lowest KE and Enstrophy and the high-
est APE, as seen in figure 3.2.5. This is expected since numerical diffusion
smoothes the momentum and the density gradients which in turn yield a
lesser KE and Enstrophy; while the artificial excessive horizontal diffusion
of salinity relatively to higher order schemes tends to diminish the effect
of the buoyant force such that it increases the equilibrium final APE. The
vortices become sharper and better developed with TVD or Centred Dif-
ferences schemes than with upwind momentum advection schemes as can
be seen from runs 4, 6 and 7 (figures 3.2.5, 3.2.5 and 3.2.5 respectively)
compared to runs 1, 2 and 3 (figures 3.2.5 and 3.2.5). The salinity lobes be-
come sharper and better developed when TVD salinity advection schemes
are employed instead of first order upwind (a clear case is run 4 and run
5-MU in figures 3.2.5 and 3.2.5, respectively, where the only difference is the
salinity advection scheme. There, the momentum advection scheme is the
same and the vortices are nearly equally developed). The previous remarks
really tend to confirm the importance of numerical diffusion both for salin-
ity and momentum advection. Runs 6 and 7 (figures 3.2.5 and 3.2.5) show
the best developed vortices and salinity lobes; the central eddy is nearly
vanished, which seems totally unrealistic. Apparently there is a very high
transfer from APE into KE as shown in the energy graphs, and also, near
the end, a large increase of Enstrophy appears. Energetically speaking, this
could be a normal thing to happen. However the size of the external vortices
compared to the cylinder perimeter violates the hypothesis seen in Pedlosky
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(1967, 1969) that the surrounding vortices should have a smaller diameter
than the central vortice: Rfwc ∝ nRv. Indeed, from real experiments, the
constant of proportionality measured was superior to 1 while in run 6 and
7 the proportionality constant is inferior to 1/4 as each baroclinic vortice
has a larger radius than the central eddy. Hence the results from the run
6 and 7 are unrealistic (figures 3.2.5 and 3.2.5). Thus, the better advection
scheme is the TVD superbee run 4 (figure 3.2.5) which has a good com-
promise of developed vortices and isohaline lobes, showing a higher KE and
Enstrophy and lower APE relative to other schemes (except to runs 6 and
7). All methods with the sigma coordinate conserve mass, volume and level.
However they present enormous oscillations. This is a characteristic side-
effect of using a FRS at the open boundary. One can see that radiation in
figure 3.2.5 doesn’t present such oscillations of these quantities. We stick to
FRS as this is the indication given from Tartinville et al. (1998). But, given
that mass, volume and level wouldn’t oscillate so much, radiating level with
a Flather (1976) scheme is believed to be the best choice. When compared
to Tartinville et al. (1998) results, in figure 3.2.5, ours are exactly within
the same margin of values and exhibit the same behaviour. Particularly,
run 5 (figure 3.2.5), which is similar to the run MU (the triangle in figure
3.2.5) in Tartinville et al. (1998), shows very close results with the latter in
all figures. Finally, in table 3.2.5 we estimate the geostrophic KE and PE
from a time average over the last two-hundred iterations and, thus, try to
verify equations (3.29) and (3.28) as regards the growth rate ω and order
of instability n. Indeed, the highest values of ω correspond to the fastest
growing vortices and salinity lobes (run 6 and 7) and the lowest values of
ω correspond to the least expanded vortices and salinity lobes (run 1 and
5). However the order of the instability is clearly erroneous as seen in real
experiments (James, 1996).

Conclusions

This work compares several advection schemes available within MOHID and
intercompares them with similar already made and acknowledged experi-
ments (Tartinville et al., 1998; James, 1996). We obtain very similar results
to Tartinville et al. (1998). Fourth order baroclinic vortices are developed.
Real experience should yield second order barotropic/baroclinic instabilities;
but this is a numerical problem that seems to affect most standard models
such as GETM (Burchard et al., 2004) and is probably due to the symme-
try of the horizontal grid and the performance of the advection scheme in
transferring KE into KE’ and average APE into KE’. The best advection
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Table 3.10: Integrated quantities averaged in time over the last two-hundred
iterations with a time-step of 300 s.

Run ID KE (J) APE (J) θ ω n

1 2.93E+08 7.32E+09 0.04 0.20 5.00
2 6.88E+08 1.79E+09 0.39 0.62 1.61
3 6.91E+08 1.89E+09 0.37 0.60 1.66
4 8.71E+08 4.33E+09 0.20 0.45 2.23

5 MU 3.33E+08 8.57E+09 0.04 0.20 5.07
6 DE 1.84E+09 6.16E+09 0.30 0.55 1.83
7 CL 1.84E+09 6.16E+09 0.30 0.55 1.83

scheme available within the Tartinville et al. (1998) experimental frame is the
full-TVD superbee (Tartinville et al., 1998). However the best model setup
would seem to use instead a Lagrangean coordinate with radiative boundary
condition, though caution should be taken, as the Lagrangean coordinate
tends to deviate from mass and volume conservation. The importance of
this study in coastal application relies on the liability of the model to show
realistic meandering of river plume fronts, coastal currents and baroclinic
instabilities in oceanic frontal systems. In such case, further development of
the model should be made in order to obtain second order instabilities. It
must be noted however that for symmetry reasons, it is impossible that a
correctly implemented numerical scheme could yield any other than result
than bi-axial symmetry along north-south and east-west axis. Furthermore,
members of the Mercator-Océan team tried to reproduce the Tartinville
et al. (1998) experiment with the NEMO-OPA model and obtained exactly
the same fourth-order instability. They used a Quick and Quickest scheme
for the advection-diffusion of both momentum and salinity.
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Chapter 4

Proposing a scalar to assess

the influence of the open

boundary condition

4.1 The scalar of Okubo-Weiss

4.1.1 A conserved quantity coined by Rossby as potential

vorticity

We follow Gill (1982) to derive a conserved quantity called potential vorticity
from the inviscid, incompressible shallow-water equations. It consists mainly
by taking the curl of the Euler equations in a rotating reference frame and
combine it with the continuity equation. The Euler equations in rotating
reference frame write as

Du

Dt
− f v = −∂p

∂x
, (4.1)

Dv

Dt
+ f u = −∂p

∂y
,

where u and v are the fluid horizontal velocity, f is the rotating frequency
and p is the pressure. The continuity equation writes as

∂η

∂t
+
∂H u

∂x
+
∂H v

∂y
= 0, (4.2)

where η is the water elevation, H = η + d is the full water depth and d is
the water depth from the rest surface level.
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Lagrange in 1781 was the first to write down the following useful relation:

v · ∇v = (∇× v) × v+∇
(
1

2
v · v

)
. (4.3)

We start by defining the quantity ζ as the curl of the velocity, ζ ≡ ∇×v and
by rewriting equation 4.1 as a function of ζ. Considering that v = (u, v, 0)
and, thus, that ζ = (0, 0, ζ) = (0, 0, ∂v∂x − ∂u

∂y ), since u and v are depth-
independent, equation 4.1 may be rewritten, by making use of equation 4.3,
as

∂u

∂t
− (ζ + f) v = −∂

(
p+ 1

2v · v
)

∂x
, (4.4)

∂v

∂t
+ (ζ + f) u = −∂

(
p+ 1

2v · v
)

∂y
,

so that, if we take the curl of equation 4.4 we get

∂ζ

∂t
+
∂ (ζ + f) u

∂x
+
∂ (ζ + f) v

∂y
= 0.

Developing, we get

∂ζ

∂t
+
∂ (ζ + f)

∂x
u+

∂ (ζ + f)

∂y
v + (ζ + f)

(
∂u

∂x
+
∂v

∂y

)
= 0.

Furthermore, if we note that ∂f
∂t = 0, we can finally write

D (ζ + f)

Dt
+ (ζ + f)

(
∂u

∂x
+
∂v

∂y

)
= 0. (4.5)

Furthermore, the continuity equation, equation 4.2, can be invoked with
some prior work-out,

∂η

∂t
+
∂H

∂x
u+

∂H

∂y
v +H

(
∂u

∂x
+
∂u

∂y

)
= 0,

DH

Dt
+H

(
∂u

∂x
+
∂u

∂y

)
= 0. (4.6)

Equation 4.5 and equation 4.6 yield

1

(ζ + f)

D (ζ + f)

Dt
=

1

H

DH

Dt
, (4.7)
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which integrates into

ln (ζ + f) = lnH + C,

ln
ζ + f

H
= C,

ζ + f

H
= eC ,

which derivates to finally yield

DQ

Dt
= 0. (4.8)

Hence, Q ≡ ζ+f
H is a lagrangian conserved quantity, in a non-local manner, in

the incompressible, inviscid two-dimensional flow, named potential vorticity.
The term potential vorticity was coined by Rossby around 1940.

4.1.2 Quantitative flow characterization

In a two-dimensional incompressible flow, the curl of the velocity may be
seen as the spinning rate of a material particle. However, the motion of a
water particle and of any continuum medium particle, has more to it than
just spinning. Any volume invariant material particle may be translated,
rotated, stretched, sheared and expanded, as sketched in the figure 4.1.2.

The rotation and the translation of a cartesian element of volume pre-
serves both the angles and the width ratio. However, the streching and the
shearing respectively change the width ratio and the angles. Of course, the
translation is measured directly from the intensity of the velocity compo-
nents of the advecting field. The other deforming rates, however, would be
given by 




∂v
∂x − ∂u

∂y , spin
∂u
∂x − ∂v

∂y , stretch
∂v
∂x + ∂u

∂y , shear
∂u
∂x + ∂v

∂y , growth

. (4.9)

These diagnostic quantities, that characterize the advecting field, can be
of extreme usefulness to identify the type of motion that a material parti-
cle may undergo. Previous studies already identified some of these quan-
tities (Weiss, 1991) and used them to identify areas of the domain where
the flow was predominantly hyperbolic or elliptic. In particular, Arakawa
(1966) used some of these quantities to determine numerical schemes that
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were more robust. Finally, the spin and shear are often referred in fluid me-
chanic textbooks (Kundu and Cohen, 2002) as the equivalent shear strain
rate tensor and rotation tensor, respectively

eij ≡
1

2

(
∂uj
∂xi

+
∂ui
∂xj

)

and

rij ≡
(
∂uj
∂xi

− ∂ui
∂xj

)
.

However these same textbooks fail to explore the usefulness and the physical
meaning of the stretch and growth tensor counterparts.

Part of the usefulness of the spin, stretch, shear and growth is the fact
that they comply to the Stokes theorem and, thus, that they’re all equivalent
to a circulation integral over the boundary of any given control volume.
Thus they have a very natural numerical implementation, for instance, in
an Arakawa C-grid. Hence they’re easy to compute diagnostic variables in
numerical, hence they should be exploited thoroughly in order to analyse
the numerical results of a fluid flow problem.

The other fundamental part of their usefulness is how they have powerful
relations with the geometry of the domain. For instance, if we consider
equation 4.6, we can see how the eulerian growth rate is related with the
depth and height of a two-dimensional lagrangian particle,

1

H

DH

Dt
= −

(
∂u

∂x
+
∂u

∂y

)
. (4.10)

Equation 4.10 yields that the relative rate of change of the height of a la-
grangian particle is equivalent to minus the horizontal divergence (shrink
rate) of the eulerian flow. Thus, if a lagrangian particle should decrease its
height, it will grow horizontally and, conversely, if the velocity field should
shrink horizontally the particle, then the particle will alter its height so as
to preserve its volume. Naturally, one can expect a high correlation between
strong horizontal velocity divergence and steep topographic gradients. Fur-
thermore, equation 4.10 is an equivalent form of the continuity equation,
but with the added value that it links a lagrangian property, the height, to
eulerian properties, the flow. Finally, this process of preserving volume for
two-dimensional properties has an important implication to rotating fluids,
first discovered by Rossby, and that is that potential vorticity must be pre-
served (in equation 4.8 ) and thus that the relative rate of change of height
of a lagrangian vortex is equal to the relative rate of change of its vorticity.
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Thus, when vortex tubes strech vertically, they tend to increase their rotat-
ing frequency, whereas when vortex tubes compress vertically, they tend to
decrease their rotating frequency. Equation 4.10 reminds us also, though,
that the vortex tubes must enlarge or shrink horizontally so as to preserve
their volume. Ultimately, another way of expressing the potential vorticity
principle, in terms of rates of motion of the flow, would be

1

spin

D spin

Dt
= − growth, (4.11)

if the spin factor is allowed to be rewritten as

spin ≡ ∂v

∂x
− ∂u

∂y
+ f.

The preceding equation simply considers the spin tensor from the point of
view of an observer in a non-rotating inertia reference frame, looking at a
fluid rotating on a table with frequency f .

4.1.3 Qualitative flow characterization

A 1981 pre-print of a study by Weiss (1991) showed that in the regions where
the flow was dominantly hyperbolic, the gradients of vorticity would grow
exponentially, while in the regions where the flow was dominantly elliptic,
the gradients of vorticity would present a periodic behavior. He related this
by comparing the squared rate of strain with the squared rate of rotation of
the fluid. The identity he derives, also presented by Arakawa (1966) fifteen
years earlier, is equivalent to

shear2 + stretch2 − spin2

2
= 2

∂v

∂x

∂u

∂y
− ∂u

∂x

∂v

∂y
(4.12)

The rate of rotation is identified with vorticity, and its square is identified
with enstrophy. Basically, in the regions of the flow where the rate of strain
(shear and stress) is dominant, the vorticity is sheared by the hyperbolic
flow, while in the regions of the flow where the rate of vorticity is dominant,
the vorticity is smoothly advected. Thus the hyperbolic flow is responsible
for the growth of the gradients of vorticity. Furthermore, Weiss (1991)
demonstrated, based on a work by Bourguignon and Brezis (1974), that the
nature of the flow (elliptic or hyperbolic) is largely influenced by the domain
boundary, probably as a consequence that the boundary topology reflects
on the Gaussian curvature of the flow’s stream function, which Weiss shows
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to be none other than the rate of strain squared minus the rate of rotation
squared (i.e. vorticity squared i.e. enstrophy).

In particular, Weiss demonstrated that for smooth convex boundaries
(i.e. the tangent plane to the boundary of the domain D, ∂D, is interior
to D at all points on ∂D), the flow is predominantly hyperbolic, while for
concave boundaries (i.e. the tangent plane to ∂D is exterior to D i.e. closed
domains, bathtubs, pools, etc) the flow is predominantly elliptic in nature,
as most classical boundary valued problems (BVPs) are.

These relationships that indicate the influence of the geometry on the
flow, and vice-versa, are recurrent and very powerful. Equation 4.7 and
equation 4.10 are other examples of how the spin rate and growth rate of a
two-dimensional incompressible flow are steered, partly at least, by topog-
raphy.

Hua and Klein (1998) later showed how the Okubo-Weiss parameter
is none other than the eigenvalue of the velocity gradient. He also dis-
cussed some of its limitations and proposed a study on the eigenvalues of
the pressure gradient for the Euler equations, which would return the OW
eigenvalues added with a correction factor.

w =
∂v

∂x
− ∂u

∂y
(4.13)

σn =
∂u

∂x
− ∂v

∂y
(4.14)

σs =
∂v

∂x
+
∂u

∂y
(4.15)

W = σ2n + σ2s − w2 (4.16)

4.2 Developing a shallow waters model in MAT-

LAB

4.2.1 From the continuum to the discrete

After discretizing a domain with a set of finite volumes, and averaging the
continuous momentum equations over the finite volumes, a correct evalua-
tion of the applied forces is still required. The difficulty in such a task, is
that there is a degenerescence of solutions when coming from the continuous
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equations of momentum - under Newton’s infinitesimal calculus formalism,
which assumes regular cartesian infinitesimal elements of volume, whose
limit is very near the null volume - to the discretized equations of momen-
tum. This degenerescence can be exposed, in particular, in the multiple
available definitions of discrete derivatives, such as the forward, the back-
ward or the mid-point discrete derivative. Once the infinitesimal limit tends
to zero, in the continuous approach, all discrete derivatives yield the same
result.

df

dx

∣∣∣∣
x

= lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

f(x)− f(x− h)

h

= lim
h→0

f(x+ h)− f(x− h)

2h
.

However, when the infinitesimal limit is non-zero, say, due to computational
restrictions, the discrete derivative will yield in fact different results, each
with a different error and with a different order of the error (the backward
and forward discrete derivatives yield a first-order truncature error, while
the mid-point discrete derivative yields a second-order truncature error).

In particular, when dealing with problems involving partial differential
equations (PDE), a finite difference (FD) approach is often undertaken to
obtain a realistic physical solution. Such approach is often described on a
regular mesh (Courant et al., 1928) which, by using a Taylor series expansion
of f , yields the exact order of the error of truncature. However, hardly
ever anyone re-did explicitly the calculations for non-regular meshes. But,
still often, the computational limits oblige the numerician to rethink the
discretized derivative in a non-regular mesh in a geometry imposed by its
set of finite volume and their inherent geometry. Thus, the infinitesimal
width of the finite volume h is no longer a constant and the mid-point
derivative, for example, needs to be rewritten as:

df

dx

∣∣∣∣
x

= lim
h−, h, h+→0

h f(x+(h+h+)/2)+h+ f(x)
h+h+

− h− f(x)+h f(x−(h−+h)/2)
h−+h

h
,

where h−, h and h+ represent the backward volume, the central volume and
the forward volume infinitesimal width, respectively. Notice how the latter
equation reduces to the regular mesh mid-point derivative when h− → h
and when h+ → h.
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Hence, the above example is enough to demonstrate that beyond the
PDE, the initial condition (IC) and the boundary condition (BC), which
are usually given care when dealing with PDE problems, the geometry of
the mesh is also of paramount importance in order to properly solve the
problem, when resorting to FD methods in real-case applications.

Now, although there is enough room and interest to perform a full review
of the FD methods within the bounds of non-standard analysis (Robinson,
1974), which is, in the author’s opinion, the natural framework to deal with
FD solvers of PDE, the objective of this work is to properly calculate the in-
compressible pressure force acting over a set of finite volumes that compose
a 1D channel while using the concept of Newton’s or Leibniz’s infinitesi-
mals. This pressure force, correctly calculated, will be included in a FD
solver of the 1D shallow water equations (SWE). An added interest of this
solution, is that it improves the available documentation of the barotropic
force calculation in the MOHID hydrodynamic modeling system.

4.2.2 Calculating the barotropic force

One of the major breakthroughs of Arakawa (1966) was to impose the con-
servation of squared quantities such as the total energy, or the potencial
enstrophy, as a means to smooth out growing instabilities during long time
integrations. He discovered ideal families of schemes that followed these
constraints, but of higher-order than first or second-order FD schemes. To
correctly impose these restrictions, Arakawa realized that the mesh needed
to be clearly defined. Thus, he resorted to define staggered grids, such as
the Arakawa A, B or C grid. For this work, the most natural choice is the
Arakawa C grid which in the unidimensional case proposes two colocated
types of cells: the T-cells and the U-cells. At the geometric center of the
T-cell type are evaluated the water level, η, the cell depth, h, and the cell
widths, ∆x and ∆y. At the center of the T-cell faces is the evaluated aver-
age of momentum, ρu over a U-cell volume. The U-cell volume has its faces
crossing the T-cells geometric center, thus forming a staggered grid com-
posed of T-cells and U-cells. This structure, thus defined, is of paramount
relevance if we are to actually compute the barotropic force. In this case,
we can only compute the barotropic force in such a structure. Any other
mesh or structure would yield different calculations, but the original generic
concept remains the same: the barotropic force is the vectorial sum of the
pressure over any given finite volume’s surface or, by virtue of the divergence
theorem (see section A.1.1), the barotropic force is the sum of the pressure
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gradient over any finite volume.

Fp =

∫

V
∇p dV

Fp =

∮

∂V
p ndS. (4.17)

Fp is the pressure force, p is the pressure, V is volume, ∂V is the volume’s
surface and n is the volume’s surface normal vector. We will show that
the former is the most natural way to compute it in Arakawa C grid. The
pressure force, in an unconstrained volume submitted to a volumic force
such as the Earth’s surface under the gravitational field, is roughly the
weight per unit area of the infinite column above any given point, plus the
inertial weight due to the acceleration of the column. This column follows
the local vertical up to the faraway stars. It comprises the weight of the air
column, which by sea-level, equals roughly to one atmosphere, summed to
the weight of the water column, should the point be underwater, where one
meter depth sums up a pressure of one atmosphere; plus, the inertial weight
due to the vertical acceleration of the column. By ”inertial weight”, we
mean the difference that a weight-scale would measure between an elephant
at rest and a falling elephant landing on it, at the instant of impact. Often,
in the case of the atmosphere, or of the Ocean, we neglect the inertial weight
term since the atmosphere is roughly static along the vertical compared to
its weight, as well as is the Ocean. This neglection is called the hydrostatic
approximation and the pressure is thus only the sum of the weight of the
column above a given point. Gill (1982) often states a more subtil physical
interpretation of the hydrostatic approximation, and that is that the vertical
motions are small relative to the horizontal motions. The pressure under
the hydrostatic approximation is given by

∂p

∂z
= −ρ g (4.18)

where z is the upward local vertical coordinate, ρ is the medium density and
g is the local gravitational acceleration. It follows that:

p(z′) =
∫ +∞

z′
ρ g dz (4.19)

where z′ is the value of the height of the point where the pressure is being
measured. Typically the hydrostatic pressure force acting on a free-surface
watercolumn, doted of a water elevation η, is calculated by splitting the
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pressure of the atmospheric column body from the whole column body (wa-
tercolumn plus the atmospheric column),

p(z′) =

∫ η

z′
ρ g dz +

∫ ∞

η
ρ g dz,

=

∫ η

z′
ρ g dz + patm.

Then, as the horizontal gradient of the hydrostatic pressure is calculated,
it is split into the barotropic and baroclinic components by means of the
extended Leibniz integration rule (see equation 2.5),

∂p

∂x
=

∂patm
∂x

+
∂

∂x

(∫ η

z′
ρ g dz

)

=
∂patm
∂x

+

∫ η

z′

∂ρ

∂x
g dz +

∂η

∂x
ρ(η) g. (4.20)

The last two terms of the RHS of the above equation are, respectively, the
baroclinic force and the barotropic force. Alternatively, a reference density
ρ0 may be defined, and the static pressure gradient would then yield

∂p

∂x
=

∂patm
∂x

+
∂

∂x

(∫ η

z′
(ρ− ρ0) g dz +

∫ η

z′
ρ0 g dz

)

=
∂patm
∂x

+
∂

∂x

(∫ η

z′
(ρ− ρ0) g dz

)
+
∂η

∂x
ρ0 g.

The latter alternative splitting of the pressure gradient does not correspond
to the classic barotropic and baroclinic forces, although it is very similar
for practical purposes. Nevertheless, it suffices to choose a ρ0 very different
from the surface density to see that the pseudo-barotropic term loses all its
physical meaning by an amount of the same difference. By the way, the
barotropic force is supposed to return the bulk of the force felt through the
whole of the watercolumn body by the motion of the water level alone.

Equation (4.20) returns the pressure gradient valid for a solid point of
the fluid in a water body. But what if the pressure gradient force would
be calculated for a whole control volume embedded in an incompressible
fluid? What would yield the result? This question is of practical necessity
to numerical modelers as they have only needs of pressure gradient forces
integrated within discrete control volumes, not points. Now if equation 4.17
were calculated along the x direction, applied to a U-cell control volume
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as shown in figure 4.2, clockwise in the x z plan, using equation 4.19 to
determine the pressure, we’d have:

Fp i+1/2 = ∆y (

−Hi
p(ηi)+p(hi)

2

+ |ηi+1 − ηi| p(ηi+1)+p(ηi)
2

+Hi+1
p(ηi+1)+p(hi+1)

2

+(hi+1 − hi)
p(hi+1)+p(hi)

2
)

where p(η) = patm and patm is the pressure of the weight of the air column
at rest, H ≡ η − h and p(h) = ρ g H + patm where p(h) is the sum of the
pressure weight of the air column and of the water column at depth h, both
at rest, for an incompressible fluid. As the reference pressure level is set at
the surface, we have patm = 0. Thus,

Fp i+1/2 =
∆y ρ g

2

(
H2
i+1 −H2

i + (hi+1 − hi) (Hi+1 +Hi)
)
.

If we use the relation a2 − b2 = (a− b) (a+ b) and if we consider that

Hi+1/2 ≡ Hi+1+Hi

2 , then we get:

Fp i+1/2 = ∆y ρ g Hi+1/2 (Hi+1 −Hi + hi+1 − hi) ,

or, putting it more simply,

Fp i+1/2 = ∆y ρ g Hi+1/2 (ηi+1 − ηi) . (4.21)

It immediately strikes that, inverting the discretization process, the barotropic
pressure term can be written as

∂p

∂x
= ρ g

∂η

∂x
(4.22)

where V = ∆y∆xHi+1/2 is the volume value. Note that all calculations
on pressure we made with the incompressible fluid case in mind. Equa-
tion 4.22 is classic; it can be deduced directly from equation 4.19 and can
be seen written out in many references (Gill, 1982),(Cushman-Roisin and
Beckers, 2007). It states that the barotropic hydrostatic pressure gradient
depends only on the surface gradient. The bottom gradient is irrelevant and
is cancelled by the bottom equal and opposite reaction to the water bottom
pressure. The air at the surface, however, cannot react to the water surface
pressure gradient creating thus an imbalance in the forces. This imbalance
yields a force that is uniform throughout the water column, or independent
of depth.
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Growth Spin

Stretch Shear

a) b)

c) d)

Growth
Sp
in

Stretch

a) b)

c) d)

Shear

Figure 4.1: Bi-dimensional cartesian elements of volume representing ge-
ometrical distortion through a) growth, b) spin, c) stretch and d) shear
operations. The geometrical operation is performed by computing the in-
tegral circulation of the scalar product of the vector field (u, v) with the
unit vectors represented in the figure. The Kelvin-Stokes theorem and the
divergence theorem are easily derived in the particular respective cases of
spin and growth.
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Figure 4.2: Unidimensional equivalent of the Arakawa C staggered grid.
Two T-cells on the left panel. One U-cell on the right panel.
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Figure 4.3: System depicted by the mathematical model. The reference
level is indicated by a dash-dotted line. η is the water elevation from the
reference level, d is the depth from the reference level and H is the total
depth. The forces acting on the system are illustrated by vector arrows. g is
the gravitational acceleration, τw is the wind stress, τb is the bottom stress
and Ω× v is the Coriolis acceleration.

4.2.3 The mathematical model

The shallow waters equations (SWE) describe the 2D barotropic motion of
water masses. The system and its forcings are illustrated in figure 4.3. The
SWE are widely described throughout the literature; for example, they are
given in Kantha and Clayson (2000) as




∂Hu
∂t + ∂Huu

∂x + ∂Huv
∂y − fHv = ν

(
∂
∂x

(
H ∂u

∂x

)
+ ∂

∂y

(
H ∂u

∂y

))

−gH ∂η
∂x + τwu

ρ0
− τbu

ρ0
∂Hv
∂t + ∂Hvu

∂x + ∂Hvv
∂y + fHu = ν

(
∂
∂x

(
H ∂v
∂x

)
+ ∂

∂y

(
H ∂v

∂y

))

−gH ∂η
∂y +

τwv
ρ0

− τbv
ρ0

∂η
∂t +

∂Hu
∂x + ∂Hv

∂y = 0

(4.23)
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where H is the depth from the surface level to the bottom, u and v are
the zonal and meridional components of velocity, x, y and z are the zonal,
meridional and depth positions respectively. f = 1.01 × 10−4 rad/s is the
Coriolis frequency at 42o of latitude, ν is the horizontal turbulent viscosity,
g = 9.8 m2/s is the gravity acceleration, ρ0 = 1033 kg/m3 is the water
mean density and eta is the water level relative to rest. τ bu is the bottom
stress zonal component, τwu is the wind stress zonal component. The bot-
tomstress (Pietrzak et al., 2002) is given by

τ bu = ρ0CDub

√
u2b + v2b

where CD is the bottom drag coefficient and ub and vb are the zonal and
meridional velocity bottom velocity components. The bottom drag coeffi-
cient (Leitão, 2003b) is given by

CD =

(
k/ ln

(
zD + z0
z0

))2

where zD is the distance to the bottom , z0 = 0.002 m is a typical roughness
length (Leitão, 2003b) and the Von Karman constant (Leitão, 2003b) is set
to

k = 0.4.

The wind stress (Pietrzak et al., 2002) is given by

τwu = ρaCau10

√
u210 + v210

where ρa = 1.25 kg/m3 is the air density, Ca is an air drag coefficient whose
values can be found in Pietrzak et al. (2002) and u10 and v10 is the air speed
at 10m height.
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Figure 4.4: Arakawa C staggered grid patterns. From left to right: the T-
cell, where η and H are evaluated at the centres, and u and v are evaluated
at the eastern, western faces and southern, northern faces respectively. The
U-cell where u is evaluated at the centre, η and H are evaluated at the east-
ern, western faces, and v is evaluated at the corners. The V-cell, where v
is evaluated at the centre, η and H are evaluated at the southern, northern
faces, and u is evaluated at the corners. The distance between two consecu-
tive cells of the same type is ∆x, zonally, and ∆y, meridionally. The indices
i and j correspond to the i-th zonal cell and the j-th meridional cell counted
in the South-North direction and in the West-East direction respectively.

4.2.4 The mesh

The mesh in use is an Arakawa Staggered regular C-grid(Arakawa, 1966) as
illustrated in figure 4.4. It is composed of three distinct cells: the U-cell, the
V-cell, and the T-cell, where are, respectively, at the centres the u, the v and
the η variables of equations 4.23. The C-grid provides better precision for
the non-linear advecting terms than the B-grid, however it looses precision
when evaluating the Coriolis term in equations 4.23 (Arakawa, 1966). For
simplicity, the mesh will have constant step-sizes ∆x and ∆y. The indices
i and j as shown in figure 4.4 and in figure 4.5 correspond to the i-th zonal
cell and the j-th meridional cell counted in the South-North direction and
in the West-East direction respectively.
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4.2.5 Boundary conditions

Currently, only Dirichelet conditions are implemented at the boundaries.
Indeed, if the T-cells domain has M ×N nodes then the U-cells have M ×
(N + 1) nodes and the V-cells have (M + 1) × N nodes. η is calculated
within {2, ..., (M − 1)}×{2, ..., (N − 1)} and u and v are calculated within
{2, ..., (M − 1)} × {2, ..., N} and {2, ..., M} × {2, ..., (N − 1)}.

Null-flux

A land mask, mT , for the T-cells mesh is introduced. The goal is to impose
a null-flux boundary condition surrounding any land cell, i.e.

~v · ~n = 0.

It returns 1 if the cell is filled with water and 0 if the cell is land. This
implies the definition of appropriate null-fluxes masks, mU and mV , for
the U and V-cells. Thus, for every i, j such that mT = 0, it is required
that mU = 0, mU i+1 = 0, mV = 0 and mV j+1 = 0. Everywhere else
the value of the masks is 1. The T, U and V masks are to be applied in
the numerical scheme to the T-cell properties, the U-cell properties and the
V-cell properties, respectively.

No-slip

The optional no-slip boundary condition (Pedlosky, 1987, p.194) consists
of both null-flux and null-tangential velocities at the vertical walls of the
domain, i.e.

~v · ~n = 0,

and
~v ⊥ ~n = 0.

Thus, for every i, j such that mT = 0, it is required, additionaly to the de-
fined above null-flux condition, thatmU i, j+1 = 0,mU i+1, j+1 = 0,mU i, j−1 =
0 and mU i+1, j−1 = 0 and that mV i−1, j = 0, mV i+1, j = 0, mV i−1, j+1 = 0
and mV i+1, j+1 = 0. One interesting aspect of the no-slip boundary condi-
tion is that it necessarily requires a global zero-curl for closed domains,

∮
~v · ~dS = 0.

Hence, using the Kelvin-Stokes theorem, the no-slip boundary condition is
an interesting configuration to test the correct implementation of the model:
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the curl within the domain must sum up to zero. Nevertheless, the no-slip
boundary condition is a very strong constraint that acts on the kinematics
and not on the dynamics of the motion per se (it is independent of the
equation of motion).

Radiative boundary conditions

When no wall is to be considered at the boundaries, then all perturba-
tion generated inside the domain eventually needs to go out of the domain.
Furthermore, it could be interesting to propagate perturbations and infor-
mation coming from outside of the domain. To this purpose are considered
the broad class of open boundary conditions (OBC). The OBC are classified
into two functional groups: the passive boundary conditions and the active
boundary conditions. The passive boundary condition are designed to let
information generated inside the domain to leave the domain, whereas the
active boundary conditions try to propagate information from outside into
the domain. Most regional oceanic modellers desire both aspects, of letting
information out of and into the domain, which is considered a challenge.
For very good reviews on OBC for regional ocean models, refer to Blayo
and Debreu (2005) and Herzfeld (2009). For more recent types of radia-
tive boundary conditions suitable for internal waves as well as the external
mode, see Marsaleix et al. (2009). Radiative boundary conditions are passive
boundary conditions (designed to let perturbations go out of the boundary)
and usually consider the linearized hyperbolic version of equations 4.23 along
the normal axis relatively to the open boundary. In this work, the gravity
wave radiative method (also known as Sommerfeld radiative method) was
implemented for the water elevation, η, and for the velocity tangential to
the open boundary,

∂Φ

∂t
t+ c · n∂Φ

∂x
= 0, (4.24)

where Φ is either the water elevation or the tangential velocity, n is the
external normal vector to the open boundary and c is the phase wave celerity
vector. In every occurence, the normal celerity wave intensity is considered
to be c · n =

√
g H. The passive Flather (1976) radiation method was

implemented for the velocity normal to the open boundary,

H v · n = η c · n, (4.25)

where v is the flow velocity vector. Both methods are implemented with
the normal velocity outside of the elevation node (NVOE) (Herzfeld, 2009).
The NVOE indicates how the radiative condition is implemented in the
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Figure 4.5: Detailed mesh emphasizing the boundaries. Composite of T,
U and V-cells, the mesh illustrates the zone of integration of each type
of cell: the blue rectangle contains the T-cells computed nodes, the thin
green rectangle contains the U-cells computed nodes, the thin red rectangle
contains the V-cells computed nodes. The thick green and red rectangles,
however, delimit respectively the faces of the U and V-cells computed nodes.
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numerical scheme and it is dependent on the design of the grid and of the
boundaries by the modeller. The configuration with the normal velocity
inside the elevation node (NVIE) is not considered in this work, though it is
thought to be relatively easier to adapt it from a NVOE configuration, rather
than the other way around (Herzfeld, 2009). Finally, the NVIE was seen to
return poorer results in some basic experiments (Herzfeld, 2009). The NVIE-
NVOE dichotomy is pertinent as each implementation will affect differently
each term of the SWE equations 4.23. Herzfeld (2009) reported some very
interesting tables describing which terms of the SWE equations 4.23 are
affected by the NVIE and NVOE implementations.
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4.2.6 The numerical scheme

For simplicity in the notation, the indices i and j will be omitted by default.
The spatial finite difference numerical scheme is centered in time and cen-
tered in time (CTCS) described in Kantha and Clayson (2000):
For the zonal momentum (U-Cell), the first-order spatial discretization writes:

∂Hu

∂t
= −

(
(Huu)i+1/2 − (Huu)i−1/2

)
/∆x

−
(
(Huv)j+1/2 − (Huv)j−1/2

)
/∆y

+f (Hv)

+ν

((
H
∂u

∂x

)

i+1/2

−
(
H
∂u

∂x

)

i−1/2

)
/∆x

+ν

((
H
∂u

∂y

)

j+1/2

−
(
H
∂u

∂y

)

j−1/2

)
/∆y

−gH
(
ηi+1/2 − ηi−1/2

)
/∆x

+
ρa
ρ0
Cau10

√
u210 + v210

−CDub
√
u2b + v2b

≡ Ru

where the halved indices correspond to fluxes at the U-cells’ faces. Thus,
the CTCS fluxes write:

(Huu)i+1/2 = mU i+1H (ui+1 + u)2 /22,

(Huu)i−1/2 = mU i−1Hi−1 (u+ ui−1)
2 /22,

(Huv)j+1/2 = mU j+1 (Hi−1 +Hi +Hi−1,j+1 +Hi,j+1)

× (uj+1 + u) (vi−1,j+1 + vi,j+1) /16,

(Huv)j−1/2 = mU j−1 (Hi−1 +Hi +Hi−1,j−1 +Hi,j−1)

× (u+ uj−1) (vi−1 + v) /16,

f (Hv) = f (H +Hi−1) /2

×(mV v)i−1 +mV v + (mV v)j+1 + (mV v)i−1,j+1

mV i−1 +mV +mV j+1 +mV i−1,j+1
,
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ν

((
H
∂u

∂x

)

i+1/2

−
(
H
∂u

∂x

)

i−1/2

)
=

ν

(
mU i+1H

ui+1 − u

∆x
−mU i−1Hi−1

u− ui−1

∆x

)
,

ν

((
H
∂u

∂y

)

j+1/2

−
(
H
∂u

∂y

)

j−1/2

)
=

ν

(
mU j+1H

uj+1 − u

∆y
−mU j−1Hj−1

u− uj−1

∆y

)
,

gH
(
ηi+1/2 − ηi−1/2

)
=

g (H +Hi−1) /2 (η − ηi−1) ,

CDu
√
u2 + v2 =

CDu

√

u2 +

(
(mV v)i−1 +mV v + (mV v)j+1 + (mV v)i−1,j+1

mV i−1 +mV +mV j+1 +mV i−1,j+1

)2

.

Notice how the (Huu)j+1/2, (Huv)j−1/2, f (Hv) and CDu
√
u2 + v2 terms,

loose significant precision over the other terms, due to their 4 terms averag-
ing.
Hence, rewriting the full momentum CTCS spatial scheme we get:
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∂Hu

∂t
=

−
(
mU i+1H (ui+1 + u)2 /22 −mU i−1Hi−1 (u+ ui−1)

2 /22
)
/∆x

−




mU j+1 (Hi−1 +Hi +Hi−1,j+1 +Hi,j+1)
× (uj+1 + u) (vi−1,j+1 + vi,j+1) /16
−mU j−1 (Hi−1 +Hi +Hi−1,j−1 +Hi,j−1)
× (u+ uj−1) (vi−1 + v) /16


 /∆y

+f (H +Hi−1) /2

×(mV v)i−1 +mV v + (mV v)j+1 + (mV v)i−1,j+1

mV i−1 +mV +mV j+1 +mV i−1,j+1

+ν

(
mU i+1H

ui+1 − u

∆x
−mU i−1Hi−1

u− ui−1

∆x

)
/∆x

+ν

(
mU j+1H

uj+1 − u

∆y
−mU j−1Hj−1

u− uj−1

∆y

)
/∆y

−g (H +Hi−1) /2 (η − ηi−1) /∆x

+
ρa
ρ0
Cau10

√
u210 + v210

−CDu

×

√

u2 +

(
(mV v)i−1 +mV v + (mV v)j+1 + (mV v)i−1,j+1

mV i−1 +mV +mV j+1 +mV i−1,j+1

)2

≡ Ru (4.26)

For the meridional spatial momentum scheme in the V-Cells, clever sym-
metry one-to-one relations with zonal momentum scheme in the U-cells are
used:

• switch ∆x and ∆y: ∆x↔ ∆y,

• switch i and j: i↔ j,

• switch u and v: u↔ v,

• switch signal of the Coriolis term: (+ ↔ −).

• switch M and N : M ↔ N ,

The finite-difference first-order numerical scheme for the waterlevel (T-Cell)
writes out:
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∂η

∂t
= −

(
(Hu)i+1/2 − (Hu)i−1/2

)
/∆x

−
(
(Hv)j+1/2 − (Hv)j−1/2

)
/∆y

≡ Rη

and each face’s CTCS flux term writes down:

(Hu)i+1/2 = mT i+1 (H +Hi+1) /2 ui+1,

(Hu)i−1/2 = mT i−1 (Hi−1 +H) /2 u,

(Hv)j+1/2 = mT j+1 (H +Hj+1) /2 vj+1,

(Hv)j−1/2 = mT j−1 (Hj−1 +H) /2 v.

Thus, the full waterlevel CTCS numerical scheme is:

∂η

∂t
= − (mT i+1 (H +Hi+1) /2 ui+1 −mT i−1 (Hi−1 +H) /2 u) /∆x

−mT j+1 ((H +Hj+1) /2 vj+1 −mT j−1 (Hj−1 +H) /2 v) /∆y

≡ Rη

The time scheme used is the Leapfrog as described in Kantha and Clayson
(2000):

ηl+1 = ηl−1 + 2∆t {Rη} ,
H l+1 = ηl+1 + d,

ul+1 =
(
ul−1

(
H l−1 +H l−1

i−1

)
+ 4∆t {Ru}

)
/
(
H l+1 +H l+1

i−1

)
,

vl+1 =
(
vl−1

(
H l−1 +H l−1

j−1

)
+ 4∆t {Rv}

)
/
(
H l+1 +H l+1

j−1

)
.

Notice how the leapfrog time scheme obliges two initial conditions at t0 and
at t1. Hence, in order to avoid mode decoupling, a Robert-Asselin filter (As-
selin, 1972) for u, v, η at each integration time-step is used, as suggested
by Kantha and Clayson (2000):

P l = P l + γ
(
P l−1 − 2P l + P l+1

)
,
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where γ is a parameter set to 0.1 (Kantha and Clayson, 2000). The Robert-
Asselin provides a good coupling between the two initial conditions, at the
expense of some loss in precision (Asselin, 1972).
The radiative scheme implemented follows a NVOE stencil on a C grid (Herzfeld,
2009). The western boundary radiative condition is defined, for the elevation
and the component of velocity perpendicular to the boundary, by

ηl+1
1, j = η1, j − 2

∆t

∆x

√
gH1, j (η1, j − η2, j) ,

ul+1
1, j = −

√
g

H l+1
1, j

ηl+1
1, j ,

for j = 1, ..., N , and is defined by, for the velocity component tangent to
the boundary,

vl+1
1, j =

(
v1, j (H1, j +H1, j−1)

−2 ∆t
∆x

√
g
H1, j+H1, j−1

2 (v1, j − v2, j)

)
/
(
H l+1

1, j +H l+1
1, j−1

)
,

for j = 2, ..., N .
For the eastern boundary, the radiation boundary condition writes,

ηl+1
M, j = ηM, j − 2

∆t

∆x

√
g HM, j (ηM, j − ηM−1, j) ,

ul+1
M+1, j = −

√
g

H l+1
M,j

ηl+1
M, j ,

for j = 1, ..., N , and is defined by, for the velocity component tangent to
the boundary,

vl+1
M, j =

(
vM, j (HM, j +HM, j−1)

−2 ∆t
∆x

√
g
HM, j+HM, j−1

2 (vM, j − vM−1, j)

)
/
(
H l+1
M, j +H l+1

M, j−1

)
,

for j = 2, ..., N . Note that the Flather (1976) radiation condition applied
to the normal component of velocity to the boundary can be replaced with
a simple null-gradient and yield similar results,

ul+1
1, j = ul+1

2, j ,

for i = 1, and
ul+1
m+1, j = ul+1

m, j ,
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for i = m+ 1.
Once more, to derive an adequate scheme for the southern and northern
boundary conditions, simply follow the symmetrical rules below and apply
them to the preceding equations

• switch i and j: i↔ j,

• switch u and v: u↔ v,

• switch M and N : M ↔ N ,

• switch ∆x and ∆y: ∆x↔ ∆y,

• switch (West, East) with (South, North).

The stability criterion is the Courant-Friedrich-Levy criterion (Courant et al.,
1959)(CFL) described in Kantha and Clayson (2000):

∆t
(√

gH + Vmax

)( 1

∆x
+

1

∆y

)
< 1.0

where Vmax is the maximum advection field intensity in m/s. Note that
for stability reasons, in the momentum equations, the friction terms are
evaluated at time l − 1.
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4.2.7 Validation

The interest of a gaussian level initial condition is that one can test adjust-
ment under gravity of a non-rotating fluid under the hydrostatic approx-
imation, much like the exercise on Gill (1982, p. 110). The hydrostatic
approximation simply neglects the vertical velocity and acceleration of the
particles to calculate the local pressure. Later on, the Coriolis acceleration
can be added, and the flow adjustment under gravity of a rotating fluid
can take place, again, much like the exercise on Gill (1982, p. 199). Some
basic simulations are set to test the conservation of volume, momentum and
vorticity. Even though energy should be conserved when considering the
Euler equations, in practice, the numerical viscosity in the model ensures
the maintenance of a good rate of dissipation of energy. The interesting
thing to test then, is to estimate the rate of energy dissipation based on
equation 2.66. More on that later.

Gaussian bell-shaped geometry

The other interesting aspect of the gaussian level initial condition, is that
its volume is easily integrable, and its initial potential energy is also easily
integrable. Indeed, the gaussian water elevation is given by expression

ησx σy(x, y) =
V

σxσyπ
e
−
(

(x−x0)
2

σ2
x

+
(y−y0)

2

σ2
y

)

(4.27)

where σx, σy is the gaussian bell width along the x-axis and the y-axis, x0, y0
are the coordinates of the gaussian bell centre. The integral of equation 4.27
over an infinite domain is classical1 and yields exactly V

∫
ησx σy dx dy = V.

Another way of writing equation 4.27 in terms of the gaussian bell-shaped
surface height, h0 ≡ ησx σy(x0, y0), is

ησx σy(x, y) = h0 e
−
(

(x−x0)
2

σ2
x

+
(y−y0)

2

σ2
y

)

, (4.28)

which makes

V = π σx σy h0. (4.29)

1
∫∞
−∞ e

−x2

dx =
√

π
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Equation 4.29 is quite plausible since when considering σx = σy, the volume
V is equivalent to that of a cylinder of radius σ and height h0. However,
to make things further interesting, integrating the square of the gaussian
bell-shaped surface would lead in determining the initial total energy of the
system. Thus, a general relationship between power orders of ησx, σy would
be mighty useful. In fact, it can be easily deduced as follows, for the volume:

V σx√
n
,
σy√
n

= π
σx√
n

σy√
n
h0

=
V

n
, (4.30)

and for the water level:

ηnσx σy =

(
V

σx σy π

)n
e
−n

(

(x−x0)
2

σ2
x

+
(y−y0)

2

σ2
y

)

=

(
V

σx σy π

)n−1
(

V
n

σx√
n
σy√
n
π

)
e

−







(x−x0)
2

(

σx√
n

)2 +
(y−y0)

2
(

σy√
n

)2







=

(
V

σx σy π

)n−1

η σx√
n

σy√
n
. (4.31)

Hence for n = 2,

η2σx σy =

(
V

σx σy π

)
η σx√

2

σy√
2

. (4.32)

Equation 4.32 will be very useful, calculate the exact initial total energy of
a gaussian bell-shaped system released under a local gravitacional accelera-
tion.
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Energy

The kinetic energy, KE is given by

KE =

∫
1

2
ρ (u2 + v2)H dA, (4.33)

where dA is an elementary surface area. The available potential energy, (or
perturbation potential energy (Gill, 1982, p. 111)), APE is given by

APE =

∫
1

2
ρ g η2 dA. (4.34)

The total energy is the sum TE = KE + APE.
The APE in equation 4.34 of a gaussian bell-shaped surface water elevation
described by equation 4.27 is easily calculated considering equation 4.32 and
is equal to

APE0, h0, σx, σy =

∫
1

2
ρ g η2σx, σy dA

=

∫
1

2
ρ g

V

σx σy π
η σx√

2
,
σy√
2

dA

=
1

2
ρ g

V

σx σy π

∫
η σx√

2
,
σy√
2

dA

=
1

2
ρ g

V

σx σy π

V

2

=
ρ g

4π

V 2

σx σy

=
ρ g

4
V h0

=
ρ g

4
π σx σy h

2
0. (4.35)

Hence equation 4.35 gives the approximate initial TE of a square domain,
so long as the length of the domain equals several times the gaussian bell
width σ.
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Geometric and similitude considerations

The volume of the gaussian bell surface is geometrically determined by equa-
tion 4.29 and maintains itself constant throughout the wave dispersion, even
if the wave gets reflects by walls or by a bumpy bathymetry.
Beyond simple geometrical relationships, the most interesting relationships
are given by adimensional numbers and by characteristic quantities of space,
time and velocity. The celerity of gravity waves, c, is given, in the shallow
water approximation, by (Kundu and Cohen, 2002)

c =
√
g H. (4.36)

The characteristic speed of the flow, U , in the gaussian bump initialization,
is zero everywhere, except at the wave front, where the characteristic velocity
can be estimated by geometrical considerations from equation 4.33 and from
equation 4.35.

1

2
ρU2

0 H π σ2 ∼ TE0

2
, (4.37)

where U0 is the initial velocity, TE0 is the initial total energy and σ ≡ σx =
σy. By replacing TE0 with equation 4.35,

U0 ∼
√

TE0

ρH π σ2

∼

√
ρ g
4 π σ2 h20
ρH π σ2

∼ h0
2

√
g

H
. (4.38)

The estimated characteristic velocity of the flow near the wave front in
equation 4.38, in the vicinity of the instant of release, is quite plausible since
the similar exercise in Gill (1982, p. 110) yields a perfectly analogous result.
Hence, the external mode celerity is defined by the total depth H, and the
barotropic flow intensity is defined by half of the height between the crest
and the trough, h

2 and modulated total depth. Analogously to similitude
theory, one may expect, as an hypothesis, qualitatively similar dynamical
behavior for fluids maintaining the same ratio between phase wave speed
and flow velocity near the wave front. Such ratio is known since classical
hydraulics as being the Froude number, Fr, as seen in equation 4.39,

Fr ∼ U

c
. (4.39)
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The Froude number, in hydraulic pipes, characterizes slow, rapid and critical
flows according if the number is below, above or equal to unity. Each type of
flow has distinct topological properties. Particularly in their locus of control,
leewards (slow) or upwards (rapid). In the wave motion propagation, it also
makes sense to characterize the ratio between the phase wave celerity and
the flow created by its propagation in its wake. Concretely speaking, the
flow corresponds to the oscillatory motion that undergo the surface particles,
the time period being that of the phase wave period, T , and the radius of
oscillation simply being the half of the height between a crest and a trough,
as illustrated in figure 4.6. In the particular case of the gaussian bump,
the Froude number is deduced by taking the ratio between equations 4.38
and 4.36, and yields

Fr ∼ h0
2H

. (4.40)

Equation 4.38 indicates that the flow velocity in the wake of the wave grows
with the initial elevation, which is rather intuitive, but also indicates that the
flow velocity reduces as the depth grows, which is rather counter-intuitive.
Hence, the faster the gravity wave celerity ,the slower the flow velocity in
its wake and the smaller the Froude number. Conversely, the upper limit
of the Froude number relating a gravity wave and the flow in its wake is
determined (noting that H = h0 + d) when considering

h0 � d,

yielding

Fr
h0�d−→ 1

2
. (4.41)

Equation 4.41 is an extreme condition that reminds us that the gravity wave
celerity is, at least, twice as fast the velocity of the flow in its wake, for a
two-dimensional wave propagating with a radial symmetry. This limit, in
practice is never met by the shallow waters equations numerical implemen-
tation, because the hydrostatic approximation, which relies on the

h� H

assumption, is violated long before.
It would be interesting, beyond estimating the initial mechanical energy,
TE0, to estimate the integrated time evolution of the mechanical energy,
specifically for the gaussian water elevation. The integrated equation of
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motion for the total mechanic energy in a closed domain is given after inte-
gration of the summed equations 2.67 and 2.72, yielding,

TE, t = −
∫

V
ρ ε dV, (4.42)

where ε is the dissipation rate originally seen in equation 2.66, which yields
for the shallow waters equation of motion,

ε = ν

((
∂u

∂x

)2

+

(
∂u

∂y

)2

+

(
∂v

∂x

)2

+

(
∂v

∂y

)2
)
. (4.43)

Considering that the viscous dissipation is a simple turbulence model, then
one can infer that the integrated turbulent kinetic energy (TKE) production
rate is given by the kinetic energy viscous dissipation rate but with an
opposite sign,

TKE, t =

∫

V
ρ ε dV. (4.44)

In the particular geometry of the gaussian elevation, it would be interesting
to estimate an analytical approximation of the viscous dissipation rate. To
do so, an over-estimation of the velocity gradient comes in need. The initial
characteristic flow velocity in the wake of the gaussian bump wave is deduced
from the initial energy,

KE0 =
1

2
TE0,

Hence
1

2
ρU2

0 π σx σyH =
1

2
TE0,

which yields

U2
0 =

TE0

ρ π σx σyH
, (4.45)

as the squared characteristic velocity in the wake of the gaussian elevation
wave front. An estimative of the width of the gaussian bump wave front
is simply given by σ =

σx+σy
2 . Thus, a plausible estimative of the viscous

dissipation coefficient for a gaussian bump initial elevation, shortly the initial
instant is

εσ(x, y, t0) =

{
ν
(
U0
σ

)2
, if x2 + y2 < σ

0, if not.
(4.46)

Integrating equation 4.42 near instant t0 and using equation 4.46 gives

TE, t = −ρ εσ π σ2H
= − ν

σ2
TE0. (4.47)
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Hence the linear approximation of the time evolution of the adimensionalized
mechanical energy can be estimated by,

TE

TE0
(t) = − ν

σ2
t+ 1. (4.48)

Equation 4.48, which satisfies the condition

TE(0) = TE0,

is very interesting because it allows to postulate a characteristic time of
dissipation, Tσ, of the mechanical energy of the system (a gaussian bump)
given by

Tσ =
σ2

ν
. (4.49)

This characateristic time should yield the order of magnitude of the time
taken for the gaussian bump to dissipate a substancial amount of its initial
energy, after being released. It is interesting to notice that it is independent
of the gravitic acceleration. A full adimensionalization of the total energy
equation is now possible:

t? ≡ t

Tσ
,

and
TE

TE0
(t?) = −t? + 1. (4.50)

Equation 4.50 seems like a good candidate for a linear fully-adimensional
approximation near the instant of release of the gaussian bump, t0, of the
time evolution of the mechanical energy of the system. Further below in
section 4.2.7, it will be seen with a numerical experiment that the proposed
model of the adimensional equation 4.50 shows an accurate characteristic
time, Tσ, and an accurate dependency with the inverse of σ2. However, it
fails to show a dependency with ν.
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Figure 4.6: The oscillatory motion of particles caused by wave propagation
is characterized by the wave amplitude, h0, and time period, T = λ√

g (h0+d)
.

Their mean linear velocity is estimated to be U = 2π h0
T =

2π h0
√
g (h0+d)

λ .
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Table 4.1: Configuration of the model for a non-rotating fluid with a gaussian
initial elevation.

Parameter Value

H 10 m
h0 1 cm
σx 6× 104 m
ν 0 m2 s−1

M ×N 37× 37
Duration 1.8 × 105 s

dx 2× 104 m
dt 500 s

TE0 2.86 × 109 J
U0 ∼ 5× 10−3 m s−1

c ∼ 10 m s−1

Fr ∼ 5× 10−4

Boundary Closed
Volume 1.13 × 108 m3

Basic results

Figure 4.7 shows the gaussian bump at initial instant for the configuration
described in table 4.1. In the configuration described by table 4.1, the ge-
ometry of the system is bi-axially symmetric along the x-axis and along
the y-axis. The grid is square and with an uneven number of cells along
each axis. The gaussian bump described in equation 4.27 and configured
as shown in table 4.1 has radial symmetry and its barycentre is located
exactly at the central grid-cell of the square domain. The momentum and
continuity equations 4.23 also display radial symmetry. Hence, the expected
solution should display a symmetry equal to the composition of the symme-
tries contained by the geometry, the initial condition and the PDE. In this
case, it should display a perfectly bi-axial symmetry, along the x-axis and
along the y-axis. Figure 4.8 and figure 4.9 show the state of the waterlevel
and the flow of the velocity field after 1.8 × 105 s of simulation. The axial
symmetry of the waterlevel and of the velocity field is one of the attributes
that advocates in favor of a correct implementation of the numerical scheme.
If any mistake was made in the terms of the continuity equation or in the
terms of the momentum equation (it could be a sign error or an index at-
tribution error in the numerical scheme), then it would probably break the
symmetry of the results. In the present test-case, the conservation of vol-
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Figure 4.7: Gaussian elevation test-case energy time evolution in inviscid,
frictionless conditions at initial instant.

Figure 4.8: Gaussian elevation test-case in inviscid, frictionless conditions
at time instant 1.8 × 105 s.
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Figure 4.9: Gaussian level velocity field in inviscid, frictionless conditions at
time instant 1.8× 105 s.

ume, vorticity and momentum are expected. The conservation of energy is
not expected due to the artificial numerical viscosity inherent in this type
of finite-diferencing technique. Figure 4.10 shows the time evolution of the
volume. The total volume is conserved as expected both from the continu-
ity equation condition and from the conservative nature of the finite-volume
CTCS diferencing technique applied to regularly-spaced grid cells. Figures
4.11 and 4.12 display the vertical curl field,

ζ =
∂v

∂x
− ∂u

∂y
,

at the end of simulation, at time instant 1.8 × 105 s, and the integrated
curl field along the time. The local curl field is zero everywhere except
close to the boundaries. Nevertheless, the circulation along the boundaries
still yields zero, as attests figure 4.12. Arakawa (1966) has an insightful
discussion examining several jacobian discretization operators that allow
the conservation of energy, vorticity, or both for the vorticity equation of
motion. It is not a trivial task to ensure conservation of both energy and
vorticity. Conservation of vorticity was ensured with this rather simple and
economic scheme. The partial time derivative of the momentum equations
in the the shallow-water equations 4.23, after integration in a closed domain,
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Figure 4.10: Time evolution of the volume. The boundaries are closed and
the volume is conserved at 4.9 × 1012 m3.

Figure 4.11: Curl at instant 1.8 × 105 s. The order of magnitude of the
extrema is roughly 10−7 s−1. The curl is locally zero everywhere, except
in a line near the boundary. Its integration yields zero nonetheless, as is
confirmed by the global curl results.
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Figure 4.12: Evolution with time of the global curl. Global curl is conserved,
as expected.

Ω, yields zero in the absence of friction terms (source and sink terms),

∫

Ω

∂u

∂t
dA = 0.

This latter result was calculated making use of the fundamental theorem of
Calculus as described in equation 2.1. In figure 4.15, the time evolution of
the integrated velocity associated to the u and v components is shown. The
expected result is zero but in fact, the model returns a result in the order
of 10−7 m4 s−1. This discrepancy is mainly due to numerical error that
arises when subtracting two large but very similar numbers using digital
computers. Consider n the order of magnitude of the large, yet similar, sub-
tracted numbers. The exact floating-point operation should return nearly
zero. However, the 14 decimal digit number returned by the numerical cal-
culation, yields the correct result only up to 10−14 × 10n of precision. To
simplify, and as an example, the following calculation

1.12345678901234E − 2 − 1.12345678901233E − 2

which should return exactly

1.000000000000000E − 16,
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instead, returns in MATLAB,

9.88792381306780E − 17.

As can be seen from the above example, the MATLAB returns an unac-
ceptably low number of accurate (significant) digits. This numerical phe-
nomenon is known as loss of significance. Hence, all the significant algarisms
are sheer noise and the result is only valid within 10−14 times the order of
magnitude of the maximum number of the subtraction, i.e. in our example,
within 10−2−14 = 10−16. This same numerical error is at the basis of the
pressure-gradient error (Beckmann and Haidvogel, 1993) in topographical
following coordinate models. Thus, when integrating the axisymmetrical u
and v velocity fields, it is fairly reasonable to expect that they add up to
zero, but only to the limit of their numerical precision given the maximum
characteristic velocity allowed times 10−14, hence the white noise error err
is estimated as

err ∼ U0AH × 10−14

∼ 2× 10−3 5× 1011 × 10× 10−14

∼ 10−4. (4.51)

Thus, any value similar or below the error, err ∼ 10−4, as regards the inte-
gration of any scalar field of velocities, is as close to zero as it gets. Hence,
the signal in the time evolution of the integrated velocities in the domain
should be considered white noise. Consequently, as far numerical computing
goes, the momentum is conserved by the implemented numerical scheme.
Figure 4.16 shows the evolution of the total, kinetic and potential energy
of the gaussian elevation test case in inviscid, frictionless conditions. The
initial energy is in very good agreement with the theoretical estimate of
2.89×109 J, calculated via equation 4.35, and its decay is strictly due to nu-
merical diffusion, since the closed boundary conditions allow no energy flux
through the boundary (radiation) and there are no source nor sink terms.
The leapfrog+CS scheme is only second-order accurate in time and space,
and is known for its rather high numerical diffusion. If the modeled domain
had its walls pushed back to infinity, then the KE and the APE would
each be exactly half the TE (Gill, 1982). In this case, the walls reflect the
waves back and forth within the domain. At each reflection, a major energy
transfer occurs from KE to PE, resulting in a peak in PE and a low in KE,
which is visible in the waterlevel by an elevation at the boundary when the
transfer occurs. The term that allows this energy transfer is the source and
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Figure 4.13: Velocity modulus at instant 3500 s. The maximum velocity is
estimated to be around 2× 10−3 m s−1.

sink term ρ g w as seen in the, previously deduced, energy equations of mo-
tion for kinetic energy, equation 2.67, and for potential energy, equation 2.72.
Mind however that this energy transfer is fully reversible and doesn’t have
a direct implication in the, so-called, energy cascade process (Burchard and
Others, 2002). During this process no dissipation of energy is considered in
the energy equations 2.67. Hence, in order to completely explain the time
evolution behaviour of energy, it would be very interesting to estimate the
energy decay rate. Another very interesting question would be to determine
in which conditions does the energy decay returned by the numerical model
is driven by physical viscosity instead of numerical viscosity. In this case,
for instance, the energy dissipation is driven by numerical viscosity since it
has zero physical viscosity.
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Figure 4.14: Velocity modulus at instant 180000 s. The maximum velocity
is estimated to be around 1× 10−3 m s−1.
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Figure 4.15: Time evolution of the the u and v components of velocity
integrated in the whole domain. The erratic behavior ranging 10−7 m4 s−1

is strictly due to numerical errors.
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Figure 4.16: Gaussian elevation test-case energy time evolution in inviscid,
frictionless conditions for a 180000 s run. The energy decay is strictly due
to numerical diffusion.
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Energy decay study

In order to answer the last question of the previous paragraph, a study with
the same model configuration described in table 4.1 was undertaken, and
several runs were made, each with a different viscosities. The energy decay
is expected to increase with physical viscosity, however, both physical and
numerical viscosity coexist. Numerical viscosity is caused by advection, and
since the advective part of the momentum equations 4.23 remain unchanged
by the varying viscosity, the numerical viscosity is expected to have exactly
the same influence on the energy decay in the different runs. Figure 4.17
displays the results for different viscosities, ν, ranging from 0 to 5 × 104

m2 s−1. Though figure 4.17 confirms the fact that energy decay increases
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Figure 4.17: TE decay with time for several viscosities, ν, ranging from 0 to
5× 104 m2 s−1. The horizontal line represents exactly one half of the initial
energy.

with viscosity, it actually yields little added value on how does energy de-
cays with viscosity. Thus a different approach is needed. A technique often
used among particle physicists that need to study the rate of decay of un-
stable atom isotopes is to look at the half-life, τ1/2, of the particles. The
half-life is the time duration for a physical quantity to decay half of its orig-
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inal value. In this case-study, its the time duration that the system takes
to dissipate half of its initial total energy. Figure 4.18 shows a plot of the
TE half-life of the system for different viscosities. The plot shows three
regions, the low viscosity region for 0 < ν < 2 × 102 m2 s−1, the transition
region for 2 × 102 < ν < 2 × 103 m2 s−1, and the high viscosity region
for 2 × 103 < ν < 105 m2 s−1. For viscosities higher than 105 m2 s−1 the
system, described in table 4.1, reaches the limits of its numerical stability.
In the low viscosity region there is no dependence of the TE half-life with
viscosity, showing a half-life of 3× 105 s. This is probably due to numerical
viscosity which prevails over the physical viscosity. The transition region
shows a balance between the numerical viscosity and the physical viscos-
ity whereas in the high viscosity region, the TE half-life is dominated by
physical viscosity, displaying a linear dependence. Therefore, the system
can be studied with the aid of numerical experimentation for low Reynolds
number, which corresponds to the high viscosity region. Since numerical
viscosity is present in every numerical modeling experiment, the TE half-
life dependence with viscosity is a very useful tool to quantify the behaviour
of any system as regards its energy dissipation. Furthermore, it allows to
determine the range of viscosities where energy dissipation is dominated by
physical viscosity. Finally, it allows to estimate what is the effective viscosity
equivalent to the numerical viscosity. In this case, described by table 4.1,
the numerical viscosity has an effective viscosity of about 200 m2 s−1, as
indicated by figure 4.18. Although figure 4.18 proposes an experimental
technique to determine the viscosity equivalent to numerical viscosity, in
practice, depending on the modelled system, it can be lengthy to make all
the required runs. Thus it would be interesting to find an analytical method
that would estimate the range of viscosities corresponding to the transition
region in figure 4.18. Analyzing schematically the numerical scheme for ad-
vection and diffusion in equation 4.26 (face-centred), the main terms in the
x-direction yield

(
U ∆t

2∆x
+
ν∆t

∆x2

)
ui+1 + 2

ν∆t

∆x2
ui +

(
−U ∆t

2∆x
+
ν∆t

∆x2

)
ui−1, (4.52)

where U is the characteristic velocity. Viscous diffusion is due to the ν∆t
∆x2

term while advection and numerical diffusion is due to the U ∆t
2∆x term. Thus,

to ensure that viscous diffusion dominates the numerical one is equivalent
to ensure that

U ∆t

2∆x
� ν∆t

∆x2
,
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Figure 4.18: Dependence of the total energy half-life with viscosity. The
viscosity axis is logarithmic. The initial energy of the gaussian bump was
2.86 × 109 J. Three regions are separated by the vertical dashed lines: the
low viscosity region for 0 < ν < 2 × 102 m2 s−1, the transition region for
2 × 102 < ν < 2 × 103 m2 s−1 and the high viscosity region for 2 × 103 <
ν < 105 m2 s−1.

which is equivalent to consider a very small numerical Reynolds number (or
numerical Péclet number) as seen in equation 4.53,

U ∆x

2 ν
� 1. (4.53)

Using the parameters in the model setup defined in table 4.1, we get

ν � 50 m2s−1,

which means that viscosities around 50 m2 s−1 are well within the low vis-
cosity region, viscosities around 500 m2 s−1 should be around the transition
region, and viscosities around 5000 m2 s−1 should be well within the high
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viscosity region. The numerical experimentation results shown in figure 4.18
corroborates the hypothesis that physical viscosity is dominant in numerical
models when the condition seen in equation 4.53 is satisfied. Figure 4.18
displays a low viscosity region where numerical diffusion is dominant, for
ν = 50 m2 s−1, a transition region, for ν = 500 m2 s−1, and a high viscosity
region where physical viscosity is dominant, for ν = 5000 m2 s−1. The in-
teresting and counter-intuitive aspect about the condition in equation 4.53
is that it has not a dependency on the time-step. If the criterion in equa-
tion 4.53 is not met then energy dissipation is driven by numerical diffusion
alone, which is undesired for a proper study on energy cascade or turbulence
in general.
Figure 4.19 displays the time evolution of TE

TE0
(t?) for ν = 5000 m2 s−1 in

adimensional units of Tσ for several values of σ. The multiple plots show
a perfect overlap, indicating that the linearized adimensional equation 4.50
is plausible. Furthermore, the adimensional time unit of Tσ, given in equa-
tion 4.49, corresponds roughly to the energy half-life of the system, which
is exactly what a characteristic energy dissipation time is expected to yield.
Finally, and to finish the study on the energy dissipation, figure 4.20 shows
the mechanical energy and its sum with the turbulent kinetic energy, calcu-
lated accordingly with the proposed model in equations 4.44 and 4.43. The
expected result

TE + TKE = TE0

is nearly obtained. The slight linear loss can be due to the impact of nu-
merical diffusion and to a consistent cumulative error while averaging the
crossed derivative terms in equation 4.43. Hence the energy analytical di-
agnostic models deduced from the simple geometry and symmetry provided
by the gaussian bump show good agreement. This seems to show that the
gaussian bump is a very interesting academic test-case to verify the correct
implementation of numerical schemes of the shallow waters equations.
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Figure 4.19: Evolution of TE
TE0

with t? for several values of σ and for a value

of ν = 5000 m2 s−1. The several time-series with the same ν show a perfect
overlap. t? = 1 is equal to Tσ, the characteristic time of dissipation proposed
in equation 4.49.
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Figure 4.20: Gaussian elevation test-case energy time evolution with σ = 60
km and with ν = 5000 m2 s−1. The TKE summed with the TE returns a
near constant value as expected, proving that the TKE model accurately
reproduces the loss in KE by viscous forces.

161

figures/swe/tke-time-nu5K-sigma60K.eps


CHAPTER 4. PROPOSING A SCALAR TO ASSESS THE
INFLUENCE OF THE OPEN BOUNDARY CONDITION

Table 4.2: Configuration of the model for a non-rotating fluid with a gaussian
initial elevation and with open boundaries.

Parameter Value

H 10 m
h0 1 cm
σx 6× 104 m
ν 5× 3 m2 s−1

M ×N 37× 37
Duration 1.8× 105 s

dx 2× 104 m
dt 500 s

TE0 2.86 × 109 J
U0 ∼ 5× 10−3 m s−1

c ∼ 10 m s−1

Fr ∼ 5× 10−4

Boundary GWE+FLA
Volume 1.13 × 108 m3

Radiation boundary condition

The former set of experiences was achieved with closed walls at the bound-
aries. The followig set of experiences aims at validating and assessing the
performance of the simple gravity wave explicit (GWE) radiation condition
for the water elevation and for the tangential velocity, and the Flather (1976)
(FLA) radiation condition for the normal velocity. Table 4.4 contains the
new configuration of the numerical experiment.
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Figure 4.21: Domain volume evolution in time. The transient perturbation
in the volume occurs when the gravity wave reaches the OB while making
its exit. The final volume is slightly less than the original volume, as the
gaussian bump exits the domain. The volume difference is roughly of the
order of ∼ 108 m3.
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Figure 4.22: Mechanical, kinetic and potential energy evolution with time.
When the gravity wave reaches the boundary, the energy, which was con-
centrated in the wave wake, exits the domain.
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Geostrophic equilibrium

The steady-state solution where the Coriolis force balances the pressure
gradient in a domain writes

{
f vg = g

∂ηg
∂x

f ug = −g ∂ηg∂y
, (4.54)

By applying the first derivatives along y and x to the first and second
differential equation respectively, and assuming that the Coriolis frequency
is constant throughout the domain, the result yields:

{
∂vg
∂x = g

f
∂2ηg
∂x2

∂ug
∂y = − g

f
∂ηg
∂y2

⇒ ∂2ηg
∂x2

+
∂2ηg
∂y2

=
f

g

(
∂vg
∂x

− ∂ug
∂y

)
=
f

g
ζg. (4.55)

ζg is the vertical component of relative vorticity in geostrophical equilibrium.
Remembering the conservation of potential vorcitity, defined in equation 4.8,

Q =
ζ + f

H
= const

⇒ ζg + f

Hg
=

ζ0 + f

H0

⇒ ζg =
Hg

H0
(ζ0 + f)− f =

(
Hg

H0
− 1

)
f + ζ0

⇔ ζg =
ηg − η0
H0

f + ζ0. (4.56)

The g, 0 subscript notation means, respectively, geostrophical equilibrium
and initial instant; furthermore, H ≡ d + η, where d is the depth relative
to a reference geopotential and eta is the surface elevation from a refer-
ence geopotential. Inserting the property found in equation 4.56 into equa-
tion 4.55 yields

∂2ηg
∂x2

+
∂2ηg
∂y2

=
f2

g H0
(ηg − η0) +

f

g
ζ0

=
f2

c2
(ηg − η0) +

f

g
ζ0 (4.57)

where c20 ≡ g H0 and where it is considered that η � d, so that c0 ≈ c.
When the solution has radial symmetry and the initial vorticity is null,
equation 4.57 writes

∂2η

∂r2
=
f2

c2
(ηg − η0) , (4.58)
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Table 4.3: Configuration of the model for a rotating fluid with a gaussian
initial elevation and with open boundaries.

Parameter Value

H 10 m
h0 1 cm
σx 6× 104 m
ν 5× 3 m2 s−1

M ×N 37× 37
Duration 1.8× 105 s

dx 2× 104 m
dt 500 s

TE0 2.86 × 109 J
U0 ∼ 5× 10−3 m s−1

c ∼ 10 m s−1

Fr ∼ 5× 10−4

Boundary GWE+FLA
Volume 1.13 × 108 m3

which is a non-homogeneous second-order linear differential equation, where
r2 ≡ x2 + y2. Depending on the value of η0, an analytical solution of
equation 4.58 can be easily found, in perfect analogy with the example
shown in Gill (1982).

Table 4.3 indicates the configuration of the experiment consisting in the
release of a gaussian bump elevation in a rotating fluid (with the Earth
Coriolis rotation frequency equal to 43o N). Figure 4.23 shows the total
volume evolution with time of the experiment described in table 4.3. This
time, the final volume gains a small increase relative to its original value.
This is theoretically deducible with the principe of conservation of the initial
potential vorticity, Q, given by, according to Gill (1982, p. 192),

Q(t) =
ζ − f η

H

H
. (4.59)

Finally, contrarily to the non-rotating case, after the gravity wave is radiated
out of the domain, a significant amount of energy is retained within the
geostrophic balance as seen in figure 4.24, about a third of the initial TE, half
of which is composed by potential energy coming from the elevation solution
at rest and another half which is composed by the geostrophic flow velocity
field. The Okubo-Weiss parameter was already applied to identify vortex
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Figure 4.23: Domain volume evolution in time. The transient perturbation
in the volume occurs when the gravity wave reaches the OB while making its
exit. The final volume oscillates and is slightly above the original volume,
as the gaussian bump exits the domain. The volume difference is roughly of
the order of ∼ 107 m3.

structures from satelite SST and SSH shots over the mediterranean (Isern-
Fontanet et al., 2004). In this case study there is a central barotropic eddy in
the centre of the domain. Figure 4.25 shows, as described by Isern-Fontanet
et al. (2004), the center of the eddy clearly dominated by enstrophy, as is
seen by the negative values of OW at the centre of the domain, and near
the edges of the eddy, a strain stress dominated field, where most of the
TKE production occurs. The sequence of panels in figure 4.26 illustrate the
geostrophic adjustement of the gaussian bump after release in three stages:
a) before the gravity wave front arrives at the boundary, b) during the
boundary crossing of the gravity wave and c), after the gravity wave front
passed and a geostrophic balance remains.
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Figure 4.24: Mechanical, kinetic and potential energy evolution with time.
When the gravity wave reaches the boundary, part of the total energy, (the
part concentrated in the wave wake,) exits the domain. The remnant part
is distributed half in potential energy and half in kinetic energy to form the
geostrophic (stationary) equilibrium of water elevation with currents.

168

figures/swe/radiate-coriolis-energy.eps


4.2. DEVELOPING A SHALLOW WATERS MODEL IN MATLAB

Figure 4.25: Okubo-Weiss field of the geostrophic balance, after the grav-
ity wave exited the domain. The central eddy signature is defined by the
negative OW, surrounded by positive OW at the edges.
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Figure 4.26: Adjustement of a gaussian elevation in a rotating domain.
Left panels display the gravity wave elevation and right panels display the
flow velocity field. a) The top panels show the transient state of the system
shortly after the initial gaussian elevation was released and before the gravity
wave front arrive at the boundaries. b) The middle panels show the gravity
wave front crossing the boundaries and the instauration of the central eddy
evolving towards geostrophic equilibrium. c) The bottom panels show the
geostrophic equilibrium, well after the gravity wave front was radiated at
the boundaries.
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4.2.8 Appying the Okubo-Weiss scalar to assess the open-

boundary condition

Besides being an effective tool at identifying eddies, the Okubo-Weiss scalar
is fundamentally an objective tool capable of identifying hyperbolic regions
of the flow, (dominated by the strain rate tensor, yielding positive values),
from elliptic regions of the flow (dominated by vorticity, yielding negative
values). The theory goes that solid boundaries (regions of null-flux) influence
locally towards an elliptic flow (Weiss, 1991). The idea is check wether the
gravity wave radiative boundary condition influence what otherwise should
have been a perfectly hyperbolic flow (i.e. OW < 0). A numerical ex-
periment was setup with two models releasing exactly the same gaussian
elevation at their centre. One of the models has the boundaries farther
away, thus doubling its grid-cells per dimension. The duration of 80000 s
was chosen so that the gravity wave front passed through the smaller domain
boundaries but barely reached the larger domain boundaries. The idea is to
compare the Okubo-Weiss parameter in the common region of both domains
at the same instant of 80000 s. Differences in the nature of the flow should
be attributed to the existence of a boundary. Different implementations of
boundary conditions should yield differences as well. The goal is to find the
best open boundary radiative scheme, thus the goal is to find the boundary
condition which yields the most similar OW map with the one from the
large domain near the boundaries. The contour plot in figure 4.27, on the
left panel, displays a radial and all positive Okubo-Weiss scalar field with
an order of magnitude of about ∼ 10−21 for the large domain. It means
that the flow is purely hyperbolic and has little intensity when compared
to the velocity in the wake of the wave front. On the right panel, the OW
contour plot in the smaller domain shows an elliptic boundary layer, due to
the partial reflection of the gravity wave. The hyperbolic flow on the domain
interior reaches ∼ 10−19, i.e. two orders of magnitude above the flow on the
interior of the large domain. This means that the hyperbolic flow of the
gravity waves was partially reflected back into the interior of the domain.
Objectively, a better radiative boundary condition would minimize or even
remove the elliptic boundary layer present in the small domain shown by
the Okubo-Weiss parameter.
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Table 4.4: Configuration of the models for a non-rotating fluid with a gaus-
sian initial elevation and with open boundaries.

Parameter Value

H 10 m
h0 1 cm
σx 6× 104 m
ν 5× 103 m2 s−1

M ×N small model 37× 37
M ×N large model 73× 73

Duration 8× 104 s
dx 2× 104 m
dt 500 s

TE0 2.86 × 109 J
U0 ∼ 5× 10−3 m s−1

c ∼ 10 m s−1

Fr ∼ 5× 10−4

Boundary GWE
Volume 1.13 × 108 m3
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Figure 4.27: Contour plots of the Okubo-Weiss scalar for the same region.
On the left panel, the large domains result. On the right panel, the small
domain results. Positive OW contours are dashed and represent hyperbolic
flow. Negative OW contours are solid and represent elliptic flow. The null-
OW contour is the thick solid line and marks the transition from hyperbolic
to elliptic flow.
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4.2.9 Conclusions

Here lies the shallow-water equations numerical model as described in Kan-
tha and Clayson (2000) with the same numerical scheme. It currently only
has the Dirichelet boundary conditions and the gravity wave explicit radia-
tion scheme added of a null-gradient or Flather for the normal velocity. This
means that, in the former case, all surface waves bounce back at the bound-
ary and and give rise to a cascade of multiple linear superpositions leading to
a path of unavoidable numerical instability. In the latter case, the solution
radiates any level perturbation (gravitic waves) at the open boundaries (Or-
lanski, 1976; Shchepetkin, 2003). It is important to note that the geometric
considerations of the gaussian bump elevation at the instant of release were
crucial in order to estimate matching predictions of energy partitioning and
production of TKE. In particular, it was found that the relative production
rate of TKE varies with viscosity and σ alone, and is independent of the
Froude number associated with the gaussian gravity wave. Further work
involves implementing relaxing conditions at the boundaries, variable corio-
lis force, cyclic boundary conditions. Ultimately, using a sponge layer near
the boundaries is considered (Martinsen and Engedahl, 1987; Shchepetkin,
2003; Pietrzak et al., 2002), as well as developing the recent works of Blayo
and Debreu (2005) with incoming characteristics and of Lavelle and Thacker
(2008) with the PML conditions.
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Chapter 5

Application and assessment

to real-world case studies

5.1 The continental Portuguese coast operational

model

5.1.1 Introduction

A three-level nested tridimensional hydrodynamic model was applied for the
west Iberia coast and refined near the Estremadura promontory using MO-
HID. Realistic forcing was used provided by the large-scale North-Atlantic
Mercator-Océan(Drillet et al., 2005) oceanic solution and by the atmospheric
MM5 model run at meteo-IST(Domingos and Trancoso, 2005). Tide is forced
using the FES2004 solution(Lyard et al., 2006). The Psy2v2R1 Mercator-
Océan solution consists of a weekly 14 day forecast and a last 7 day reanal-
ysis. The meteo-IST solution consists in a 7 day atmospheric forecast. A
pre-operational system was mounted at Maretec-IST that pre-processes the
forcing solutions, runs the hydrodynamical model and serves every mon-
day nowcasts and forecasts until thursday of the general circulation off west
Iberia. The results are stored in netcdf files and served by a LAS and an
Opendap(Doty et al., 2001) server.

While the work of Coelho et al. (2002) focused more on the study of the up-
welling process, the poleward current and the Portugal Current system, the
current work aims at investigating the model’s capability of reproducing ac-
curately the known processes near the Gulf of Cádiz up to the Estremadura
promontory in forecast mode. Namely the Mediterranean outflow spreading
pathway and the ENACW entrainment near the gulf of Cádiz. To do so,
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results from the model starting in mid-November 2006 up to mid-February
2007 were analysed.

5.1.2 Downscaling

TheMOHID hydrodynamical numerical model solves the Navier-Stokes equa-
tions of a rotating fluid in a β plane. The geophysical fluid is constrained
to the hydrostatic and the Boussinesq approximations, as a practical result
of a dimensional analysis(Bryan, 1969).

The numerical solver uses a finite-volumes approach(Martins et al., 2000)
similar to the one described by Chu and Chenwu (2002).

MOHID solves also a seawater density non-linear state equation depend-
ing on pressure, salinity and potential temperature originally proposed by
Millero and Poisson (1981).

Finally, to calculate the turbulent vertical mixing coefficient, MOHID em-
beds GOTM(Umlauf and Burchard, 2005; Burchard and Others, 2002). The
mixing-length scale parametrization proposed by Canuto et al. (2001a) is
used.

The horizontal discretization is an Arakawa C grid(Arakawa, 1966). The
vertical coordinate is hybrid and generic, allowing to choose between z-level,
sigma and lagrangian coordinates(Martins et al., 1998).

The baroclinic pressure gradient term is always calculated using a z-level
approach, with a linear interpolation, in order to minimize spurious pressure-
gradient errors that induce unrealistic vertical velocities(Beckmann and Haid-
vogel, 1993; Shchepetkin, 2003; Kliem and Pietrzak, 1999).

In this application, the 2D model uses a sigma coordinate, and the tridi-
mensional models use a lagrangian vertical coordinate with shaved-cells at
the bottom(Adcroft et al., 1997) and a z-level initial condition.

The temporal numerical scheme is an alternate direction semi-implicit (ADI)
method(Leendertse, 1967). The spatial discretization numerical scheme is a
total variation diminishing (TVD) scheme(Fletcher and Srinivas, 1991).

The modelled domains description and configuration follows in the next
subsections. Tables 5.1 and 5.2 summarize the initial conditions and the
boundary conditions. In order to obtain coherent open boundary conditions
(OBC), a good reference solution is mandatory(Blayo and Debreu, 2005).
The high resolution solution of the Northern Atlantic and the Mediterranean
basin provided by Mercator-Océan, PSY2v2r1, is likely to be a reliable so-
lution available(Drillet et al., 2005; Bahurel et al., 2001) that reproduces
realistically the Northern Atlantic circulation and in particular the western
Iberian coastal circulation and the Gulf of Cadiz circulation. While assimi-
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Table 5.1: Nested models boundary conditions. The abbreviations defi-
nitions are: Zonal and meridional velocity components (U , V ), potential
temperature (T ) and salinity (S), water level relative to a reference level
(η), flow relaxation scheme (FRS ), Mercator-Océan solution(M-O), west-
ern Iberia barotropic model (WI ), portuguese Iberian coastal model(P),
Estremadura promontory model (C ).

Boundary conditions

Surface models
Wind stress forcing
from MM5 winds through equation 5.1. P, C
Interpolated heat fluxes
from MM5 data. P and C

Open Boundary Conditions models
FRS (Martinsen and Engedahl, 1987) of the M-O so-
lution for U, V, T and S.

P and C

Interpolation of η, U, V, T and S from M-O. P and C
Barotropic mode Blumberg radiation(Blumberg and
Kantha, 1985).

WI

Barotropic mode Flather radiation(Flather, 1976). P and C
Sponge layer. P and C

Land boundary models
Freshwater discharges. P and C
Null fluxes of (U,V). WI, P and C

Bottom boundary models
Bottom stress forcing according to equation 5.8. WI, P and C
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Figure 5.1: On the left panel, the Western Iberia coast baroclinic model
bathymetry. The domain is labeled P. Bounded by [−12.6◦ −5.5◦] W ×
[34.4◦ 45.0◦]N. 0.06◦ spatial resolution. On the right panel, Portugal con-
tinental central regional coastal model bathymetry, labeled C. Bounded by
[−11.2◦ −8.8◦]W × [40.3◦ 37.5◦]N. 0.02◦ spatial resolution. Baseline data
from ETOPO 2′(Etopo, 1988) on both panels.
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Table 5.2: Nested models’ initial conditions, assimilations and spin-up. The
abbreviations definitions are: Zonal and meridional velocity components
(U , V ), potential temperature (T ) and salinity (S), water level relative to
a reference level (η), flow relaxation scheme (FRS ), modèles de Mercator-
Océan (M-O), western Iberia barotropic model (WI ), portuguese Iberian
coastal model(P), Estremadura promontory model (C ).

Initial conditions

U, V, S and T are interpolated from the M-O
solution.

P and C

η is initialized to a reference level. WI, P and C

Assimilation

U, V, T and S FRS according to equation 5.5. P and C

Spin up

Baroclinic force and wind forcing ignition
over 10 inertial periods. P
FRS and Flather radiation ignition
over 10 inertial periods. P

lating in-situ data, remote sensed sea level anomaly (SLA) and sea surface
temperature (SST), as well as atmospheric forecasts fed by the European
Centre for Medium Range Weather Forecast (ECMWF), the Mercator so-
lution reproduces accurately the main characteristics of the circulation off
western Iberia peninsula. Namely, it reproduces the Mediterranean Outflow
(MO), several downstream Mediterranean veins(Ambar et al., 2002; Bower
et al., 2002; Iorga and Lozier, 1999) and also the formation of meddies near
Cape St.Vincent and over the Estremadura bank(Pichevin and Nof, 1996;
Bower et al., 2002). However, the number of meddies formed by the model
at St.Vincent Cape is inferior relatively to the observations. According to
Drillet et al. (2005), this is probably due to the z-level vertical coordinate
choice. Indeed, such a choice of coordinates is seemed to underestimate the
dense water sinking downstream of the Gibraltar strait because of the in-
tense nature of the MO near the Gibraltar strait. This problem was coped
by Drillet et al. (2005) with a stronger relaxation towards Reynaud et al.
(1998)’s climatology downstream of the Gibraltar strait(Drillet et al., 2005).
Unfortunately, the bias of the results in Reynaud’s climatology are propa-
gated and an inferior temperature and salinity of about 0.75◦C and 0.15 psu,
respectively, is obtained(Drillet et al., 2005) when compared with known
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measurements such as in the works of Iorga and Lozier (1999). This said,
Mercator’s solution is likely to be a good candidate as a reference solution
capable of forcing a model operationally. The Mercator solution extrac-
tion domain ranges approximately from 24.5◦W, 28◦N to 4◦W, 51◦N . The
Mercator solution is interpolated to the MOHID meshes in two steps:

1. An interpolation using a triangulation method is used for each bidi-
mensional layer. It produces an auxiliary field with the same horizontal
mesh than the MOHID model.

2. A linear interpolation of each vertical column of the auxiliary field
to the MOHID columns is applied. This step will produce a field
consistent with the MOHID mesh.

The Mercator solution is labeled herein M-O. The model is coupled with
MM5 (Grell et al., 1995) atmospheric model from IST in offline mode. The
three-level nested atmospheric model is forced with the Global Forecast-
ing System (GFS)7 day forecast over the region bounded by 20◦W, 28◦N
and 5◦W, 50◦N . The nested models resolution are 81, 27 and 9 km and
are composed of 25 vertical layers. It simulates winds, sensible heat, latent
heat, solar radiation, precipitation, evaporation, specific humidity, cloud
cover and atmospheric pressure.The Finite Element Solutions (FES) are
tidal atlases released nearly every two years, being the latest one of them the
FES2004(Lyard et al., 2006). These tidal atlases result from model compu-
tation in unstructured meshes with spectral element methods(CEFMO and
MOG2D-G code) applied to the nearly-linearized shallow water equations.
The FES model assimilates remote-sensing data (Topex/Poseidon, ERS1
and ERS2 satellite altimetric data assimilated with the CADOR code), in-
situ tidal gauges measurements, and tide atmospheric forcing (ECMWF).
Being a state-of-the-art atlas, it is recommended for tidal applications(Lyard
et al., 2006).
The surface fluxes of the MOHID models are composed of momentum (in-
duced by wind stress and calculated by a diffusive term), sensible heat, latent
heat, evaporation, precipitation and infrared radiation. The latter term is
the system’s response to the solar radiative forcing discussed further below.
Wind forcing is calculated(Pietrzak et al., 2002) according to equation 5.1

τuw = ρaCau10

√
u210 + v210 (5.1)

where τuw is the surface stress induced by wind, ρa = 1.25 kg/m3 is air
density, Ca is a drag coefficient whose range is described in Leitão (2003b),
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finally u10 and v10 are the horizontal components of air speed at 10 m of
height above the sea surface.
The solar radiation term is decomposed into the long wave and short wave
penetration into the water column. It’s physically modelled by a penetrating
heat source term at the surface and decaying along the water column. The
decay constants are two-fold and depend on the type of waters and the type
of wave-lengths. The system’s physical response to this radiative forcing is
the infrared radiation, modelled as an outwards surface flux.
Two methods of open boundary conditions (OBC) are frequently used: ra-
diative methods, based on the Sommerfeld condition,

∂Φ

∂t
+ c · n∂Φ

∂x
= 0 (5.2)

and nudging (or relaxation) methods. For an interesting review on the
main OBC methods see Blayo and Debreu (2005). According to his work,
the Flather radiation method(Flather, 1976), consisting of the Sommerfeld
condition combined with the continuity equation, is best for radiating the
water level. However, it requires an external water level and an external
barotropic flux to be known in order to be used. Indeed the Flather radiation
method may be equated at the model’s open boundaries in the following way:

(q− qref ) · n = (η − ηref ) (c · n) . (5.3)

where q and qref are the model’s and the external solution’s barotropic flux,
respectively; n is the external open boundary normal vector; η and ηref are
the model’s and the external solution’s water level. c is the surface gravity
wave’s celerity, approximated by

√
g H −→r , where −→r is the propagation di-

rection unit vector. When only the external water level is known, then the
Blumberg method(Blumberg and Kantha, 1985), consisting of a combina-
tion between a nudging term and the Sommerfeld condition, may be used
as an alternative:

∂η

∂t
+ c · n∇η = −η − ηref

Tlag
(5.4)

η is the water level, ηref is the reference water level, c is the external wave
celerity, ‖c‖ is estimated to be

√
g H, n is open boundary external normal

vector, g is the local gravity acceleration, H is the depth and Tlag is the
relaxation decay time. The Blumberg method relaxation decay time ranges
from a shorter 200 s in deep waters to a longer 2000 s in coastal shallow
waters. For the other variables, where no accurate estimation of their celerity
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is available, another class of OBC method is used: the relaxation method.
It consists on a looser approach to the clamped (Dirichelet) conditions on
the open boundary Γ of the domain Ω(Blayo and Debreu, 2005), where a
relaxation decay time is introduced and an additional domain is created Ωs,
10 cells wide, which interfaces between ∂Ω ≡ Ω ∩ Ωs and Γ. This approach
is commonly regarded as a Flow Relaxation Scheme (FRS)(Martinsen and
Engedahl, 1987). The relaxation term writes

∂Φ

∂t
= −Φ− Φref

τ
. (5.5)

where Φ is the relaxed variable, Φref is the reference solution and τ relax-
ation time decay constant. The time decay varies from 3 × 104 s on Γ to
1 × 109 s on ∂Ω, 10 cells to the interior. Thus the computed domain be-
comes Ω∪Ωs. Following Martinsen and Engedahl (1987), the FRS approach
is used as the main downscalling technique for S, T , u and v, respectively
the salinity, the potential temperature, the zonal velocity component, and
the meridional velocity component. Additionally, in order to smooth out
the nudging at Ωs, a sponge layer, consisting of a high viscosity layer, is
implemented. The viscosity terms range, inside Ωs, from 1.8× 104 m2/s at
Γ to 10 m2/s on ∂Ω. In Ω, the horizontal viscosity is considered constant at
10 m2/s. Finally, in order to filter out the high frequency noise generated by
resonant open boundary spurious reflections, a laplacian biharmonic filter is
implemented in the primitive equations. Typical values of the biharmonic
filter coefficient may vary between 1 × 1010 m4/s and 1 × 109 m4/s.A null
mass and momentum flux is imposed at the lateral land boundary:

v · n = 0 (5.6)

where v is the velocity vector and n is the normal vector at the land-water
interface. A freshwater discharge with daily values is imposed near the Tagus
area for both models. The data source comes from the publicly available
INAG (Instituto da Água) web-site1 and, in this application, spans the 2004-
2006 period. The 2006 year is replicated and used in 2007 simulations as
an estimative of realistic daily freshwater discharges. The bottom stress is
given by Pietrzak et al. (2002)

τub = ρ0 CD ub

√
u2b + v2b (5.7)

where τub is the bottom stress, ub and vb are the near-bottom velocity hori-
zontal componentes, ρ0 is the reference density. The drag coefficient is given

1http://snirh.pt/
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byLeitão (2003b),

CD = k/ ln

(
zD + z0
z0

)2

(5.8)

where zD is the bottom height and z0 is the roughness length. The Von
Karman constant is set to(Leitão, 2003b) k = 0.4. The bottom roughness
length is set to z0 = 0.0025 m for all models.

Barotropic model WI

Since the Mercator solution is rigid-lid and doesn’t takes into account the
tide effect correctly, the idea came that a tidal reference solution should be
built and linearly superposed to the Mercator reference solution in order
to force coastal models with oceanic and tidal effects. Thus, a barotropic
model model of western Iberia was created named WI, forced only with
the FES2004 tidal atlas solution. The atmospheric forcing from the MM5
model was not be included, but the S1 and S2 components of the FES2004
solution already take into account the atmospheric tide forcing(Lyard et al.,
2006). The bathymetry baseline data is taken from the ETOPO 2′(Etopo,
1988). The domain has 0.06◦ horizontal and 180 s temporal resolution and
is bounded within the interval [−13.7◦ − 5.3◦] W × [33.5◦ 46.1◦] N . The
water level reference solution is computed from the FES2004 tidal har-
monic components. The Blumberg radiative condition(Blumberg and Kan-
tha, 1985)(eq. 5.4) is applied at the open boundaries. A biharmonic filter
is implemented in the domain to filter out high-frequency noise and has a
109 m4/s coefficient. The barotropic force is gradually connected over 10
inertia periods.

Portuguese coastal model P

A tridimensional baroclinic model is nested to the latter. It may be viewed
as the enhanced version relative to Coelho et al. (2002). Composed by 42
vertical layers, it possesses a 0.06◦ horizontal resolution and a 180 s temporal
resolution (Coelho only had 18 layers and 8.5 km of resolution). Bounded
by [−12.6◦ − 5.5◦] W × [34.4◦ 45.0◦] N the model’s forced with the MM5
atmospheric forcing reference solution at the surface, and by the barotropic
model WI and the Mercator model reference solutions M-O at the open
boundaries. The atmospheric forcing is slowly started over 10 inertia pe-
riods. The level is radiated by a Flather radiation method(Flather, 1976)
whose barotropic flux and level reference solution, qref and ηref , are given
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by the linear superposition of the barotropic fluxes and water levels of WI
and M-O respectively, qref = qWI + qM−O and ηref = ηWI + ηM−O. Also,
the Flather radiation method is slowly activated over 10 inertia periods.
Furthermore, a FRS(Martinsen and Engedahl, 1987) is applied to S, T , u
and v. The baroclinic force is slowly activated over 10 inertia periods. The
biharmonic filter coefficient is set to 1 × 1010 m4/s. Turbulent horizontal
viscosity is estimated roughly to 10 m2/s inside the domain, but a sponge
layer is applied at the open boundaries, ten cells wide. The sponge layer
evolves gradually from a viscosity of 102 m2/s inside of the domain, up to
1.8× 104 m2/s at the boundary. The modelled domain is labeled P and its
bathymetry is shown in figure 5.1.

Estremadura model E

The Estremadura bank regional model, bounded by [−11.2◦ − 8.8◦] W ×
[40.3◦ 37.5◦] N , differs from P in the horizontal spatial resolution and in the
temporal resolution, respectively of 0.02◦ and 90 s. It also differs from P in
the Flather radiation (eq. 5.3) where the reference level and the barotropic
flux come only from the P model. This model should be able to reproduce
the evolution of finer-scale physical processes. In particular those associ-
ated to the Rossby baroclinic radius of deformation who, near the western
Iberia zone, should have approximately a 25km radius (Chelton et al., 1998).
Stevens (1990) suggests that a resolution ten times higher than the first baro-
clinic Rossby radius of deformation (i.e. circa 2.5 km) is required in order to
resolve the associated finer scale physical processes. In the western Iberia re-
gion, 0.06◦ of horizontal resolution doesn’t meets the latter requirement but
0.02◦ does. It is, thus, expectable that finer-scale processes should appear
in this model. These processes are filtered out by the rougher resolution in
the P model. This model is labelled C (as in Centre), and its bathymetry
(interpolated from ETOPO 2′(Etopo, 1988)) is illustrated in figure 5.1.

5.1.3 Results

There are two modes of forcing:

• The analysis mode, where the oceanic forcing uses the analyzed M-O
solution.

• The forecast mode, where the oceanic forcing uses the prediction mode
M-O solution.
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Figure 5.2: To the left, the interpolated temperature fields of the M-O
solution. To the right, the superposition of the temperature fields of the C
model over the P model. The temperature scale’s interval is [14.5 20.0]◦C
at the surface (top) and [12.0 14.7]◦C at 250 m (bottom). The graphical
tool is Mohid GIS.
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Figure 5.3: Horizontal distribution of velocity ensemble average at 2 m depth
for the top panel and 645 m depth for the bottom panel. Two main branches
of the MW spreading pathways are well pronounced in the bottom panel:
the poleward slope current branch, and the cyclonic recirculation flowing
southward.
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Either way, the atmospheric forcing always used the MM5-IST 7 day fore-
casting solution. This provided less reliable results for the analysis mode
runs. It is an issue to be addressed in the near future. The models are
scheduled to run the past 7 days in analysis mode and the next 7 days in
forecasting mode. The 14 day run requires 48 hours to finish, thus giving in
the end, 5 days of ocean forecasts. The time to complete the runs can be
optimized, perhaps reducing to a 40 hours run. The first 7 days run is the
model’s spin-up, allowing it to slowly activate the wind-forcing, the baro-
clinic forces and the radiative methods while it adjusts a velocity field to the
initial density field. An alternate method consisting of performing a calculus
continuation from the end of the last analysis is considered. However, for
initialization purposes, performing a 7 day spin-up every week is thought to
be numerically more robust than undertaking a hot start, since the latter
method would induce a lot of high-frequency noise in the η, u and v terms.
Two common approaches are used to tackle inconsistent current and level
initial fields: one is based in an inverse model method which consists of an-
alyzing previously the initial fields and, by means of adequate constraints,
to generate a physically consistent initial velocity and level fields. But this
method is generally quite slow to implement and demands robust computer-
ized resources (for example the VIFOP tool (Auclair et al., 2000)). Another
approach is to create a digital filter by means of an adequate convolution
product with a high-frequency cut-off distribution (Lynch and Huang, 1992).
A third method is to use proven consistent velocity and level fields to start
with, such as the null velocity and constant reference level fields. This work
undertook the latter method. A comparison between the Mohid results and
the Mercator solution is undertaken. The first increment of the comparison
is the visual inspection. Results of the temperature and salinity fields of
the Mercator solution can be visually inspected against results of the Mohid
solution in figure 5.2 for a 2006 mid-December day. The C model results
are superimposed over the P model results. We can observe a general gain
in the spatial variability of fronts forming in the C domain, for all depths
and all variables (not shown). This was expected due to the finer resolution
of the C domain. At the depth of the thermocline over the Estremadura
bank, at the C domain at 250 m depth, internal waves interference patterns
can be observed in figure 5.2 due to reflections at the domain’s boundaries.
These interferences occur during the model’s spin-up (starting about the
3rd day) and are rapidly dissipated (by the 7th day). They appear near the
thermocline depth, which is where the vertical density gradient is steeper,
and which is where the number of vertical layers is higher. An alternative
hypothesis is that these internal waves were produced at different generation
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Figure 5.4: On the left panel, ensemble averages of salinity contours of [35.5,
35.52, 35.83, 35.94, 36.05, 36.16, 36.27, 36.38, 36.49, 36.6] and color maps
in the interval [35.5 36.6]. On the right panel, ensemble averages of zonal
velocity contours of [-.15, -.12, -.09, -.06, -.03, .0, .03, .06, .09, .12, .15] m
s−1 and color maps in the interval [-.15 .15] m s−1. The plots are meridional
sections in the Gulf of Cádiz at longitudes 7.23 ◦W , 7.83 ◦W and 8.73 ◦W
from top to bottom, respectively. They show how the MO shifts from a
bottom current to a buoyancy driven intermediate depth jet current.
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Figure 5.5: On the top panels, ensemble averages of meridional velocity
contours of 0.1 ms−1 apart and color maps in the interval [−.1 .1] ms−1

are shown. Positive velocities are equatorward and negative velocities are
poleward. On the middle panels, ensemble averages of salinity contours of
[35.6, 35.66, 35.72, 35.78, 35.84, 35.90, 35.96, 36.02, 36.08, 36.14, 36.2] and
color maps in the interval [35.6 36.2] are shown. On the bottom panels,
ensemble averages of temperature isocontours of 1◦C apart and color maps
in the interval [6 16]◦C are shown. The plots are zonal sections off the
Portuguese coast at latitudes 38.25 ◦N , for the left panel; and 40.95 ◦N , for
the right panel.
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points in the Estremadura promontory, and that their interaction yields the
interference pattern. This shows that the C domain is able to generate inter-
nal waves. This type of internal wave interference pattern doesn’t appear in
the P domain. This is probably due to an insufficient horizontal resolution,
or simply because the domain’s characteristic length and time period isn’t
compatible with the formation of internal waves. Near the Iberian coastal
area, the characteristic length of internal waves is estimated to vary between
20− 30 km (close to the the first baroclinic Rossby radius of deformation).
According to Stevens et al. (2000), a tenfold resolution is required in or-
der to accurately reproduce frontogenesis and baroclinic instabilities, i.e. a
2km resolution in the West-Iberia coastal area. Hence, the latter argument
sustains the hypothesis that the P domain has a non-permitting baroclinic
instability resolution. The work of Drillet et al. (2005) validates the capabil-
ity of the Mercator solution of accurately reproducing the meddies life-cycle
(since their genesis near Cape São Vicente or over the Estremadura bank
to their dissolution in Atlantic waters) as well as the characteristic Mediter-
ranean veins of the area. Nonetheless, as we initialize each time with a null
velocity and level field, a 14 day run isn’t sufficient for our model to generate
fully developed meddies as these yield characteristic times of formation of at
least 80 days(Papadakis et al., 2003). Thus, by these standards, the model
is de-facto non-meddy permitting. This problem is expected to be solved
with longer runs or with calculus continuation from the last analysis run.
However, the salinity and temperature profiles and the qualitative aspect of
the density-driven currents can be analyzed and expected to yield realistic
results. Thus each 14 day run was integrated in time, and the ensemble
mean of these averages spanning from mid-november 2006 to mid-february
2007 was calculated. Given an ensemble of fields

{
ψ1, ψ2, ..., ψN

}
that evolve

over a period of time T , we can split their time average

ψi ≡
∫ T
0 ψi(t) dt

T
(5.9)

into the spin-up characteristic time τ component, ψi′, (described in the used

methodology) and the rest, ψ̂i, i.e.

ψi =

∫ τ
0 ψ

i(t) dt

τ + (T − τ)
+

∫ T
τ ψi(t) dt

τ + (T − τ)
≡ ψi′ τ

T
+
ψ̂i (T − τ)

T
. (5.10)
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Figure 5.6: Color map and contours of salinity distribution ensemble aver-
age at 1000 m depth ranging in interval [35.6 36.2] showing the spreading
pathway of the MO off western Iberia. Contour lines are valued [35.6, 35.78,
35.84, 35.9, 35.96, 36.02, 36.08, 36.14, 36.2].

Hence their ensemble average can write

〈
ψ
〉

≡
N∑

i

ψi/N

=

N∑

i

aψi′ + b ψ̂i

N
(5.11)

= a
〈
ψ′〉+ b

〈
ψ̂
〉
,

where a = τ/T and b = (T − τ) /T . Thus, in our case, it is a reasonable
assumption to state that

|
〈
ψ′〉 | < |

〈
ψ̂
〉
|, (5.12)

as regards the η, u and v fields; since all start with null values and since
tide, windstress and density gradient forces are gradually connected during
the spin-up period time, τ . Hence, minding the Schwarz inequality,

|a
〈
ψ′〉+ b

〈
ψ̂
〉
| < a |

〈
ψ′〉 |+ b |

〈
ψ̂
〉
| (5.13)

< a |
〈
ψ̂
〉
|+ b |

〈
ψ̂
〉
|,
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thus, from equation 5.11 and since a+ b = 1, the latter inequality is equiv-
alent to

|
〈
ψ
〉
| < |

〈
ψ̂
〉
|. (5.14)

Inequality 5.14 has a strong physical meaning, assuming that equation 5.12
holds. It means that the ensemble average properties for η, u and v are
probably underestimated and that this should be minded when looking at
〈η〉, 〈u〉 and 〈v〉 results. Figure 5.3 shows the ensemble average accord-
ing to equation 5.11 of the horizontal velocity near the surface and 645
m deep. At the surface a wind-driven equatorward flow evolves whereas
at the subsurface an intermediate depth MW undercurrent evolves and
branches. Two main branches are depicted by the model’s results: a pole-
ward slope current branch that flows leaned against the Portuguese shelf
whereas, south of the Strait of Gibraltar, another branch is formed show-
ing a cyclonic recirculation southward that will feed the Canary currents
system. This MW spreading pathways scenario is consistent with the ones
evidenced in the works of Bower et al. (2002) and Iorga and Lozier (1999).
Figure 5.4 is a series of meridional cross sections of ensemble averages
according to equation 5.11 of salinity and zonal velocity in the Gulf of
Cádiz at longitudes 7.23 ◦W , 7.83 ◦W and 8.73 ◦W . The cross sections
show the formation of deep Mediterranean Water flowing past the Gibraltar
Strait into the Atlantic, forming the Mediterranean salt tongue(Bower et al.,
2002). The overflow of denser Mediterranean waters entrains at the Gibral-
tar Strait under the less dense North Atlantic Central Water (NACW) and
downslopes(Deleersnijder, 1989) along the continental slope on the northern
margin, south of Algarve as a density-driven current. As it flows westwards,
at about 8◦ W , it reaches neutral buoyancy and detaches from the bot-
tom near 700 m depth and continues as a boundary undercurrent, then it
descends down to 1000 m depth(Bower et al., 2002) near 8.5◦ W (fig.5.4)
where it seems to attain hydrostatic equilibrium. The Mediterranean salt
tongue turns northward past Cape São Vicente and probably continues flow-
ing northward to as far as Porcupine bank (50◦ N)(Iorga and Lozier, 1999).
Figure 5.5 is a series of zonal vertical cross sections of ensemble averages of
salinity, temperature and meridional velocity of western Iberia at 38.25 ◦N
and 40.95 ◦N . Figures 5.4 and 5.5 evidence the main Mediterranean vein by
the anomalous salinity maximum. The depth of salinity maxima varies be-
tween the 800 m and 1200 m depth. The number of salinity maxima varies
from one to two, sometimes three. It is interesting to see how the bound-
ary driven main Mediterranean veins follow the poleward undercurrent by
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Figure 5.7: The Mercator solution sea surface temperature daily average on
the September 9th 2006, at the bottom left. A NOAA sea surface temper-
ature satellite image taken during the same day, at the top. At the bottom
right, the Mohid instantaneous solution taken the same day at 19h00 hours.
The temperature scale is set to [17◦C 22◦C]. However, the color palettes
differs between the satellite images and the model’s fields. The graphical
tool used is Mohid GIS.

inspecting the number of salinity maxima, each maximum corresponding to
one MW vein. Figure 5.6 shows the ensemble average of salinity off west-
ern Iberia at 1000 m depth. It shows clearly the spreading extension of
the Mediterranean tongue with a similar signature as that evidenced in the
works of Drillet et al. (2005); Papadakis et al. (2003); Coelho et al. (2002).
Figure 5.7 compares results from the Mercator solution interpolated over the
P domain and the results from the P and C models and a NOAA satellite
sea surface temperature (SST) image. All results are for the same day. Mer-
cator results are daily average, MOHID results are instantaneous at 12h00
and the satellite image was taken during the mid-afternoon. Though it’s
hard to analyze the results, the MOHID finer resolution model has a higher
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spatial variability and is likely to resemble more the satellite SST.

5.1.4 Conclusions

A three-level nested tridimensional hydrodynamical model was implemented
for the Portuguese coast with MOHID. It is forced with realistic ocean (Mer-
cator, FES2004) and atmospheric (Meteo-IST) forecasts. The system is pre-
operational as its results are published via an opendap server weekly since
November 2006. It can provide realistic OBC to finer scale regional and
local models in realtime or in offline (such as the Oil Observer). There is
evidence that the finer-resolution E domain is internal-wave-permitting in
contrast to its upper-scale models P model and M-O model. The model’s
MW spreading pathways scenario is realistic when compared to other works
observations and analysis(Iorga and Lozier, 1999; Bower et al., 2002; Drillet
et al., 2005; Coelho et al., 2002). The results show a shift in the MO from
a bottom current to an intermediate depth buoyancy driven current near
8 ◦W in concordance with observations(Bower et al., 2002; Iorga and Lozier,
1999). Also the salinity maxima observations show a realistic entrainment
from the NACW in the Gulf of Cádiz. The model’s ensemble average of the
salinity signature at 1000m depth occured by non-meddy MW spreading is
consistent with the works of Drillet et al. (2005); Coelho et al. (2002).

5.2 The bay of Biscay inter-comparison

5.2.1 Circulation and processes in the Bay of Biscay

The Bay of Biscay in the North Atlantic Ocean

The Atlantic general circulation of the northern hemisphere, illustrated in
figure 5.2.1, is commonly illustrated by two cells: the anti-cyclonic sub-
tropical gyre, intensified on the American continent coast (the Gulf Stream:
intense surface and warm current), and the sub-polar cyclonic gyre. The
borderline between these two gyres is roughly situated at 45oN. The Gulf
Stream branches at about 42oN. One of the branches derives south-eastward,
crosses the Atlantic ridge, south of the Azores archipelago (between 32oN
and 37oN) and enters the eastern basin thus forming the Azores Current
(AzC). The other branch moves north-eastward, forming the North-Atlantic
Drift (NAD). At the level of the Charlie-Gibbs fracture situated at 52oN
and 26oW, a NAD branch forms the less intense South-Eastward Portugal
Current (PC). The PC will eventually merge more to the South with the
AzC. Both currents will then delimit the eastern Subtropical Gyre.
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Figure 5.8: Proposed circulation pattern of the Atlantic Ocean in the north-
ern hemisphere of the earth. The circle represents the Bay of Biscay region.

The region that includes the Bay of Biscay, delimited by the NAD, the
AzC and the Eastern borders (Portuguese, Spanish, French and United-
Kingdom coasts) is atypical in the sense that it presents particularities that
are unique when compared with other regions of the Eastern Ocean coast.
It can be split into three distinct areas: the abyssal plain, the continental
slope, and the continental shelf. The circulation that develops in these
areas is well characterized and systematic, while presenting seasonal and
inter-annual variability.

The most important aspect that drives the North-Atlantic circulation is
the distribution of the different water masses; it is thus relevant to charac-
terize them as well in this study.

North-Atlantic and Bay of Biscay Waters Description

Water masses are formed at the surface in precise regions of the Ocean. They
are then transported to different regions and to different depths. Water
masses tend to preserve in time their characteristics in potential tempera-
ture and salinity, and usually represent an important volume. In table 5.2.1
are described the water masses found in the North-East Atlantic Ocean,
and, more particularly, in the vicinity of the Bay of Biscay. They are refer-
enced and quantitavely described in the works of Ambar (1983); Van Aken
and Becker (1996); Ambar and Howe (1979); Rios et al. (1992); Pollard
et al. (1996). The Eastern North Atlantic Central Water (ENACW) are
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Table 5.3: Water masses in the North-eastern Atlantic Ocean.
Water masses Depth (m) T (◦C) S σ (kg.m−3)

ENACW (sub-
tropical branch)

< 300 > 12.5 > 35.75 < 27.05

ENACW (subpo-
lar branch)

< 400 10.5− 12.5 35.6− 35.7 27.1− 27.2

ENACW (Bay of
Biscay)

< 600 10.5− 11.5 35.6− 35.6 27.2− 27.3

MW (surface
core)

400 − 700 11.8− 12.2 35.8− 35.9 27.2− 27.3

MW (upper core) 700 − 900 10.5− 13.5 35.8− 36.8 27.4− 27.7
MW (lower core) 1000 − 1500 9.5− 12.5 35.8− 37.5 27.7− 27.9
EASAIW 500 − 1500 6.0− 9.0 35.1− 35.3 27.4− 27.6
LSW 1500 − 3000 3.4− 4.0 34.9− 35.0 27.7− 27.8
LDW > 3000 < 3.3 34.9− 35.0 > 27.8

sub-surface waters characterized by high temperatures; the Mediterranean
Waters (MW) are characterized by high salinity cores at 1000 m depth;
the Eastern Atlantic Sub-Arctic Intermediate Water (EASAIW) possess low
temperature and moderate salinity up to 1500 m depth; the Labrador Sea
Water (LSW) presents high depth, very low temperature and low salinity;
finally the Lower Deep Water are very deep currents with extremely low
temperatures and low salinity.

Water masses in upper layers

The ENACW are produced in the surface in the North-East Atlantic dur-
ing periods of convections and winter mixing. During summer, they are
protected from the surface by stratification. The ENACW can be found as
deep as 600 m depth. A subpolar branch of the ENACW is formed south-
ward of the NAD, and roams South-Eastwards (Pollard et al., 1996). A
subtropical branch of the ENACW, to the North of the AzC, roams North-
Eastwards towards the Spanish coast (Pingree, 1997). The abyssal plain
region off the Bay of Biscay is a zone of strong winter convection, where the
ENACW are also formed (Fraga, 1981).
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Water masses in intermediate Ocean layers

The Mediterranean Waters (MW) are salty dense waters that enter the At-
lantic Ocean in the bottom of the Gibraltar straight. The outflow downslopes
and is entrained by the ENACW in the Gulf of Cadiz until it reaches hydro-
static equilibrium. Two cores are usually formed and measured, one that
contains a maximum of salinity (upper core), and another that contains a
maximum of temperature (lower core). A third core more near the surface
is also formed in the western part of the Gulf of Cadiz, but is identifiable
only along the Western Iberia coasts (Ambar, 1983).

Water masses in deep Ocean layers

The Labrador Sea Water (LSW) and the Lower Deep Water (LDW) are
cool and fresh waters found in the bottom layers of the ocean. The LDW
are a composition of the North Atlantic Deep Waters (NADW) and of the
Antactic Bottom Waters (ABW).

The abyssal plain

The general circulation in the first hundreds meters isn’t too intense as
it is characterized by the anti-cyclonic Portugal Current (PC). At a lower
scale, essentially anti-cyclonic eddies are frequently observed with a typical
diameter ranging from 50 to 100 km. The abyssal plain is separated from
the continental shelf by the shelf-slope, along which a strong slope current
develops showing strong seasonal and inter-annual variability.

The continental slope

The large scale meridional surface density gradient generates an Eastward
flow. The consequent volume accumulation near the coast on the shelf cre-
ates a level gradient that generates a Northward geostrophic current along
the shelf slope, thus separating the shelf dynamics, from the deep Ocean’s.
The slope current is coupled with a downwelling motion that lowers the
isopycnals. The slope current is highly baroclinic and its direction may
inverse with depth.

The zonal wind is another driver of the circulation. During summer, the
Azores anti-cyclone is centred on the North-Atlantic. On Europe’s western
coast, Northerly winds are predominant. This causes an offshore water
transportation resulting in upwelling events and a diminution in intensity of
the slope current. During winter, the Azores anti-cyclone moves southward,
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and thus the Westerly winds become predominant in Europe’s western coast.
The slope current is thus intensified and propagates northward penetrating
into the Bay of Biscay as the Navidad current. Its width is around 40 km,
its depth goes down to 200 m and typical currents reach 10 - 20 cms-1.

The Navidad current shows a very strong seasonal and inter-annual
variability that seems to correlate well with the North-Atlantic Oscillation
(NAO) index. Changing winds and bathymetry accidents, such as canyons,
can easily cause this current to disperse and generate eddies called SWOD-
DIES (Slope Water Oceanic eDDIES), because they trap warm and salty
surface waters and transports them to the center of the Bay of Biscay
(Garcia-Soto et al., 2002).

The continental shelf

The Bay of Biscay comprises a large French continental shelf oriented in the
North-South direction, and a narrower Spanish continental shelf oriented in
the East-West directions. The French continental shelf size ranges from 300
km over the Armorican region, down to 50 km in the Aquitan region. The
Spanish continental shelf is the narrowest, with only 30 to 40 km wide. The
circulation over the shelf is highly influenced by physical processes such as
tide, wind and river discharges.

Tidal currents Tidal currents intensity depends largely on the water col-
umn depth: deeper water column will yield a less intense tidal current,
whereas shallower water columns will yield more intense currents. This
is a consequence of the momentum conservation principle. Also, re-
fraction and other non-linear couplings may occur due to irregularities
in the bathymetry.

The tide-driven current intensity ranges from a few centimetres per
second to nearly a meter per second (near Ushant). But in the southern
part of the Bay of Biscay, velocities are nearly zero.

Tide driven currents are more intense over the shelf, and the shear
stress induced introduces strong vertical mixing between surface wa-
ters and bottom waters.

Internal waves Internal waves are reputed to contribute to the general
Ocean mixing and to the equilibrium of the thermohaline circulation
(Munk and Wunsch, 1998). The interaction of internal waves with
topography can induce energy transfers, instability development and
internal waves breaking (Wunsch and Ferrari, 2004). Baines (1982)
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shows that the continental slope in the Bay of Biscay is the area where
the M2 internal wave’s generation is more intense. However the M4
non-linear wave is also relevant for generating internal waves over the
continental slope. Internal waves are also known to be dependent
on the horizontal density gradient, besides the vertical stratification.
Variations of density gradients would induce a change in the internal
waves rays slope.

River plumes River plumes are an important feature of the shelf circu-
lation. Unfortunately, the MOHID model wasn’t setup to properly
handle the river plume simulation. The main rivers are the Loire, the
Gironde and the Adour, with a mean flow of 900 m3 s−1. Freshwa-
ter over the shelf are transported by winds and geostrophy currents
formed by the intense surface density gradients. Their transport is
seasonal, either Northward, during winter, up to the British channel,
either Southward of the Bay of Biscay, during spring.

The Ushant front The Ushant front is a result of the interaction between
topography and tidal currents, which are very intense near Ushant
(Mariette and Le Cann, 1985). In this shallow water area, the bot-
tom friction homogenizes the water column and avoids the forming of a
seasonal thermocline, whereas, westwards, the water column is deeper,
and the bottom friction isn’t enough to homogenize, and a seasonal
thermocline is formed. Thus, during summer, an intense horizontal
density gradient is formed and is called the Ushant front. The front
is dynamically unstable as wind and topography may interact with
it. Near the coast, the tidal currents are less intense, and the seasonal
thermocline appears, thus forming an internal front. The Ushant front
is characterized by a 1 to 2 K / km thermal gradient, and the temper-
ature difference between the cold water and the warm water can reach
over 5 K.

Seasonal stratification Over the continental shelf, seasonal stratification
is rather common. Tidal currents however, tend to homogenize the
stratification and form complex hydrological structures, such as the
Ushant front. The inter-annual stratification variability depends on
the interaction of several processes such as the heat balance at the
surface interface, the river plumes and the general circulation over the
shelf (Puillat et al., 2004).

Upwelling The upwellings are characterized by an offshore transport of
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Figure 5.9: The Ushant front as described in the literature. A homogeneous
water column (in light blue) separating, at the surface, stratified warmer
waters in the inner shelf and in the outer-shelf (red).
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Figure 5.10: Upwelling regions in the Bay of Biscay in blue. Warmpool
region, with weak winds, in red.

surface waters, leading to an upwelling of subsurface colder waters to
the surface. This produces a front separating warmer waters offshore
and cooler waters near-shore. This offshore transport occurs, when
Northerly winds blows, and a balance between the wind stress and the
Coriolis force establishes whose resultant surface stress is westward
and offshore. Upwellings are predominant in summer, when the Azores
anti-cyclone is positioned for maximum northerly winds on Western
Europe. Western Iberian coast and in the French Lands are have
more intense upwellings, while Northern Iberian coast and Southern
Brittany have less intense upwellings (see figure 5.2.1). When well
established, it is represented by 2 K colder surface waters over 10 to
20 km of width on the near-shore.

The trapped cold water mass The trapped cold water mass is a cold
water mass (¡ 12 oC), positioned over the continental shelf and trapped
below the seasonal thermocline, that doesn’t change its hydrological
characteristics all year long. During summer, the seasonal thermocline
isolates it from the surface. During winter, the river halocline isolates
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Figure 5.11: The cold water mass in the Bay of Biscay in deep blue. Seasonal
stratified surface waters in red. Well mixed water column in light blue.

the cold ”bourrelet” from the surface. Near the continental slope, a
dropping of the isopycnals (as seen in figure 5.2.1), isolates the cold
”bourrelet” from the deep waters area.

Warmpool During summer, in the South-Eastern corner of the Bay of Bis-
cay, the solar flux is more intense and winds are weak. This conjunc-
ture tends to create a 20 m depth thin, stratified thermocline, 1-2 K
warmer than its offshore counterpart. Seasonal autumn winds disperse
the warm water northwards, although this northward transportation
is highly sensitive to wind conditions.

5.2.2 Modelling strategies

Description of the models MOHID and NEMO-OPA

MOHID Based on a standard finite-volume approach of the Ocean Primi-
tive Equations, using a generic combination of sigma and/or cartesian
vertical coordinates with an ADI semi-implicit scheme for the hori-
zontal advection-diffusion numerical schemes, as well as possessing a
complete suite of modern and standard OBC, the MOHID model is
comparable in its specifications to ROMS or NEMO-OPA. Thus it was
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for the MOHID team a great opportunity to participate in this inter-
comparison exercise on a real-life case-study: the Biscay area. Some
literature that best describes MOHID, besides the PhD thesis of Mar-
tins et al. (1998); Leitão (2003a), would be Coelho et al. (2001); Leitão
et al. (2005); Riflet et al. (2007b).

NEMO-OPA NEMO(Nucleus for European Modelling of the Ocean) is a
state-of-the-art modeling framework for oceanographic research and
operational oceanography. While OPA is an Ocean Parallel model. It
allows several ocean related components of the earth system to work
together or separately. This framework is intended to be interfaced
with the remaining component of the earth system (atmosphere, land
surfaces, ...) via the OASIS coupler.

NEMO is distributed under CeCILL license. In order to define and
organize human expertise and financial ressources, the major part-
ners are organized within the NEMO Consortium, including CNRS,
Mercator-Ocean, UKMO and NERC.

NEMO is an ocean modelling framework which is composed of ”en-
gines” nested in an ”environment”. The ”engines” provide numeri-
cal solutions of ocean, sea-ice, tracers and biochemistry equations and
their related physics. The ”environment” consists of the pre- and post-
processing tools, the interface to the other components of the Earth
System, the user interface, the computer dependent functions and the
documentation of the system.

MOHID and NEMO-OPA description are presented in table 5.2.2 below.

It must be noted that the models can only be compared if the horizontal
grid and the forcings are the same.

Forcings

The best ocean forcing data available was found to be the Mercator-Océan
PSY2V1 system for the 2004 period, while the atmospheric forcing is defined
by the Aladdin model. Realistic freshwater river discharges are provided for
the main rivers in the region.

Bathymetry and horizontal grid

The bathymetry used for the intercomparison is from SHOM(Service Hy-
drographique et Océanographique de la Marine) and ETOPO5’(Electronic
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Table 5.4: Description of the models used in the intercomparison

NEMO-OPA MOHID

Free Surface Time-spliting lin-
ear free surface

Time-coupled
free surface, ADI
semi-implicit
(Leendertse and
Liu, 1977)

Vertical coordi-
nate

Cartesian +
partial-step (the
bottom layer
adapts itself to
the bathymetry),
49 levels

Cartesian +
partial-step
cells(Adcroft
et al., 1997) (min-
imum is 5% of the
layer thickness),
43 levels

Advection tracer QUICKEST +
ULTIMATE
(Leonard, 1979,
1991)

TVD scheme (ex-
plicit in horizon-
tal and implicit in
vertical)

Horizontal Diffu-
sion

constant constant

Corrections to ad-
vection scheme

Preserves the en-
ergy and the en-
strophy

-

Corrections to
turbulent diffu-
sion scheme

Biharmonic
−5.108 m4 s−1

Biharmonic 109

m4 s−1(Delhez
and Deleersni-
jder, 2007)

Vertical turbulent
diffusion scheme

Blanke and
Delecluse (1993)

Canuto et al.
(2001b)

Surface forcing BULK formula
(Large et al.,
1994)

BULK formula
(Kraus and
Businger, 1994;
Jerlov, 1968;
Chapra, 1997)

Barotropic time-
step

4s 90 s

Baroclinic time-
step

240s 90 s
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Figure 5.12: Original bathymetry used for the intercomparison.
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Table 5.5: Bathymetry filtering method for NEMO-OPA and MOHID

Model Bathymetry pro-
cessing

Reason

NEMO-OPA Minimum depth
of 5.75 m

To avoid having
too few layers in
shallow water ar-
eas.

MOHID Filtering high
gradient areas.

MOHID runs a
tool that checks
every cell of the
bottom layer and
assures that a
minimum thick-
ness ratio with
adjacent cells is
guaranteed.

TOPOgraphic maps) and presents an initial resolution of 1´. The regular
horizontal grid has a resolution of 3 km (1/36◦).

Atmospheric fields

TheMétéo-France ALADIN(Aire Limitée Adaptation Dynamique Développement
International) yearly model fields (Courtier and Geleyn, 1988) were used
with a 0.1o resolution and a 3 h timestep. Its data would include dayly
fields:

• Surface atmospheric pressure,

• Specific humidity at 2 m,

• Air temperature at 2 m,

• Zonal wind speed at 10 m,

• Meridional wind speed at 10 m.

Integrated fields:

• Zonal wind stress,
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• Meridional wind stress,

• Precipitation,

• Brut solar flux,

• IR flux.

Tide

The model MOG2D(2D gravity waves model) (Lyard et al., 2006; Pairaud
et al., 2008) provides fields for the M2, N2, K2, S2, K1, O1, P1, Q1 and M4
components:

• Water level,

• Barotropic transport,

• Charge.

Open Boundary (OB) fields

The problem of dealing with open boundary conditions (OBC) is the most
common in coastal modelling. It’s also the hardest to solve.

The mathematical algorithm used at the OB must allow the incoming of
external information while letting the model’s solution evolve freely. Outgo-
ing perturbations generated inside the model must travel outside the domain
and must not be reflected at the boundaries.

There are a great number of OBC numerical schemes to let radiate the
barotropic mode, the baroclinic mode and scalar quantities (Palma and
Matano, 1998, 2001; Marchesiello et al., 2001).

A maximum three-fold resolution ratio is recommended when applying
a reference solution at the OB. Moreover, an intermediate model should
be nested between the reference solution and the inner model, in order to
stay below the three-fold resolution ratio. Also, it is necessary to have a
good knowledge of the water masses presented in the reference solution. If
the water masses are not correctly initialized in the model, then no correct
solution is bound to be found.

Water masses are generated by the thermohaline circulation of the global
ocean, and their genesis requires a very large time scale (millenniums)(Emery
and Meincke, 1986). Thus, regional models cannot reproduce these water
masses. The water masses need to be present in the initial condition and at
the OB: in this case, they are present in the PSY2V1 thermohaline solution.
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Figure 5.13: Bias of temperature (left panel) and salinity (right panels)
profiles between PSY2V1 and IFREMER climatology, during 2004.

Figure 5.2.2 shows the evolution of the monthly and horizontally aver-
aged temperature and salinity, between the PSY2V1 model and a clima-
tology (from IFREMER), during year 2004. Besides differences in surface
temperatures, ranging up to 0.8oC, mainly due to the absence of tidal mix-
ing in PSY2V1, the most remarkable biases in temperature and salinity are
relative to the Mediterranean Waters (MW) centred on the 1000 m depth
(the differences reach negative 1oC and negative 0.25).

Figure 5.2.2 represents the TS diagram of PSY2V1 model, in each grid
point off the shelf (> 200 m depth). Left panel represents the TS diagram
of the initial condition (01/01/2004) and the right panel represents the an-
nual mean. Surface warmer waters have a high variability in time, thus the
main difference between the initial condition and the annual average. Water
masses are globally well represented, albeit the PSY2V1 MW are less pro-
nounced, with a lower than expectable salinity maximum; even if the MW
are within the climatology interval bounded in red in the figure. However,
the MW signal is even less pronounced in the annual mean TS diagram,
which could indicate an advection problem in the PSY2V1 model in the
Bay of Biscay region. This characteristic is also present in figure 5.2.2, with
average biases that tend to grow in time.

Hence, the PSY2V1 thermohaline solution in the bay of Biscay is good
enough to be used as initial condition and as lateral boundary condition.
However, a less good representation of the MW must be considered when
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Figure 5.14: PSY2V1 TS diagram in the Bay of Biscay. Left, 01/01/2004
diagram (initial condition for the regional models). Right, 2004 annual mean
diagram. The red curves represent the climatology minima and maxima.

comparing results with real data. Thus, this problem will also affect all the
regional models.

The used algorithms for the OBC are displayed in table 5.2.2

Rivers

For this study, only the three main french rivers were considered: The Loire,
the Garonne and the Adour. The daily runoffs are represented in figure 5.2.2.
The Loire and the Garonne flow are more oust han the Adour flow, by at
least a ten-fold factor.

Unfortunately, no river discharges were considered during the MOHID
simulation. This means the shelf results will not be comparable at all.
However, water masses and large scale currents are well comparable.

Initialization

Initialization is equally a critical point in coastal modelling. There are
several methods available according to the nature of the study, but in
most cases, the initial fields come from the OGCM. A simple interpola-
tion/extrapolation procedure of the OGCM fields will generate small per-
turbations that will manifest as spurious high-frequency gravity waves and
high vertical velocities. An adjustment time is required to radiate the initial
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Table 5.6: Numerical OBC schemes.
NEMO-OPA MOHID (Leitão

et al., 2005)

Barotropic OBC
Flather (1976) (η,
u, v)

Flather (1976)

Baroclinic OBC specified at the
boundary

flow relaxation
scheme u, v (Mar-
tinsen and En-
gedahl, 1987)
+ viscosity
sponge (Delhez
and Deleersni-
jder, 2007)

Tracer OBC specified at the
boundary

flow relaxation
scheme S, T
(Martinsen and
Engedahl, 1987)

Relaxation zone 15 grid-cells wide
in space and one
day duration (for
T and S only)

30 grid-cells wide
in space and
one third of day
duration for u,
v, S and T. Ex-
ponencial decay
in space directed
away from the
relaxation zone.

Frequency daily daily
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Figure 5.15: Adour, Loire and Garonne rivers daily flow used to simulate
year 2004.
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Table 5.7: Initialization methods used in NEMO-OPA and in MOHID.
Model initialization

NEMO-OPA S and T initialization. The
model then adjusts with these
fields to the bathymetry.

MOHID Horizontal interpolation and
vertical re-interpolation. S
and T initialization. The
model then adjusts with these
fields to the bathymetry.

perturbations, defined as the spin-up time. There are several initialization
methods that allow to reduce or even to nullify this spin-up (Palma and
Matano, 2001; Leitão et al., 2005). The different initialization methods cho-
sen by each team are shown in table 5.2.2.

Computation time

The NEMO-OPA simulation lasted roughly 3 days on a 12 CPUs Fujtsu/Siemens
cluster. Each CPU is an AMD Opteron dual-core 64 bits between 2 and 2.2
GHz.

The MOHID simulation lasted around 37 days (using only a single core)
Intel Core 2 Extreme X9650 3 GHz, 8 GB RAM.

In-situ data inventory

Climatology Climatology from IFREMER. 0.4o resolution and 261 layers.

Satellite imagery • Daily, weekly, monthly and yearly MODIS SST,

• Hourly or daily SEVIRI SST,

• Daily NAR satellite imagery,

Time series • 8 SST buoys (as seen in figure 5.2.3, left panel),

• 18 tidal stations (as seen in figure 5.2.3, right panel),

In-situ profiles • PELGAS campaign 28-04-2004 to 23-05-2004. 75 S,
T profiles.

• EVHOE campaign 29-10-2004 to 12-12-2004. 101 S, T profiles.
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5.2.3 Results comparison, validation and analysis

Water masses evolution and biases

Before undergoing a showdown of each models result to each of the identified
physical processes described in section 5.2.1, it is important to show the
global consistency of the coastal model relatively to the reference solution,
as initial and lateral boundary conditions.

Water masses evolution, bias relatively to the PSY2V1 reference

The water masses in solution PSY2V1 were presented, as well as the tem-
perature and salinity biases relative to the IFREMER climatology. It is
important to follow the evolution of these water masses introduced by the
initialization method, and maintained by the open boundary conditions and
vertical physics. For each month was calculated an average profile of the
difference between the model and the PSY2V1 reference solution. The re-
sulting biases are presented in figure 5.2.3.

Globally, the water masses characteristics are preserved by the NEMO-
OPA model, even if the model stocks excessive heat and salt around 1000
m depth, particularly during summer. The biases tend towards zero by the
end of the simulation.

MOHID, however, although starting from a near null bias with the ref-
erence solution, quickly presents, after the first month, a dipolar bias in
temperature and salinity that grows in time and that strengthens the MW
signal. There are several hypotheses that can explain this anomaly relative
to the reference solution. On one hand, the PSY2V1 reference solution may
have higher vertical diffusion than MOHID. On the other hand, little differ-
ences in the density state-equation would change the equilibrium depth of
water parcels, thus presenting a systematic dipolar-like bias between model
and reference. Finally, there’s also the hypothesis that this could indicate
some problem with the vertical mixing or with the advection.

In figure 5.2.3 are traced the TS diagrams of the abyssal plain (> 200 m
depth) for the initial conditions and the annual mean for each model. Also,
the maxima and minima TS contours of the PSY2V1 reference solution are
superimposed in red (from figure 5.2.2). The results obtained with NEMO-
OPA and MOHID are well inside the PSY2V1 reference solution contour.
However the surface waters don’t reproduce the river plumes accurately.
This is expected in MOHID, as the river plumes aren’t modelled at all. As
for NEMO-OPA, the river plumes are detailed in detail in the main body of
this report.
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Figure 5.16: Temperature (left panels) and salinity (right panels) differences
between each model and PSY2V1. The top panels display the difference in
temperature and salinity between NEMO-OPA and PSY2V1, whereas the
bottom panels display the difference between MOHID and PSY2V1.

214

figures/bay/image033-0.eps
figures/bay/image035-0.eps
figures/bay/image037-0.eps
figures/bay/image039-0.eps


5.2. THE BAY OF BISCAY INTER-COMPARISON

Figure 5.17: TS diagrams of each model. The left panels represent the initial
condition. The right panels represent the annual mean. The red contours are
the TS minima and maxima from the PSY2V1 reference solution. The top
panels represent the results of NEMO-OPA. The bottom panels represent
the results of MOHID.
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Thermal balance

Heat and salt balance was performed by interpolating/extrapoling all models
results, the reference solution and the climatology to a reference grid with
the same vertical Cartesian discretization. Naturally, the interpolations will
introduce errors in the balances and hence the diagnostics can only hold a
qualitative nature. Thermal and haline balances fluctuations are represented
in figure 5.2.3.

As can be seen, the reference solution thermal fluctuation is quite differ-
ent from the climatology, whereas, both models NEMO-OPA and MOHID
are in very good agreement, equally, with the climatology.

However, the salt balance is somewhat more complex to analyze. As
it must represent the incoming MW, it shouldn’t necessarily have a yearly
periodicity as the climatology seems to claim. Hence all models, except
MOHID, have very different ending values, including the PSY2V1 reference
solution. Both NEMO-OPA and MOHID are in phase with the PSY2V1
haline balance variability, however, the haline balance difference relative
to the reference solution in MOHID tends to grow, while the NEMO-OPA
balance difference is higher during summer and disappears by the end of the
year. Thus, while MOHID haline balance follows better the climatology and
tends to diverge from the reference solution, the NEMO-OPA is in phase
and follows better the reference solution. While this could prove to be a bad
feature for MOHID (to diverge from the reference solution), in this case, it
shows that MOHID can improve a not-so-good reference solution concerning
the haline distribution.

SST bias towards monthly MODIS images

MODIS monthly SST images are very useful for calculating the models bi-
ases. The SST biases of each model, in the whole domain and in the Ushant
area (Longitude bounded between 6◦W and 4◦W, and Latitude bounded
between 47.5oN and 49oN) are presented in figure 5.2.3. The biases of
NEMO-OPA and MOHID are quite in phase. However, due to the thick
8 m depth superficial layer, MOHID was the only model showing a negative
cooler bias relative to MODIS during the summer months. Indeed, all the
other models, including the reference solution, have a warmer bias trend
relative to MODIS SST in their approximately 0.5 meter thick superficial
layer.
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Figure 5.18: Thermal (left panel) and haline (right panel) balance normal-
ized to the initial value obtained for each model. The climatology is also
represented.
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Figure 5.19: SST bias of NEMO-OPA and MOHID relatively to monthly
MODIS images. Left panel, bias in the whole region. Right panel, bias in
the Ushant area (6oW to 4oW and 47.5oN to 49oN).

Nesting method and global dynamics validation

Nesting a model inside an OGCM is a critical aspect. The objective is
to evidence the difficulty of models to manage ingoing (from the OGCM)
and outgoing (from the local solution) information, by leveraging on OBC
algorithms. Two methods were chosen. The first method consists in calcu-
lating the tide-filtered annual mean velocity field at 15 m depth as seen in
figure 5.2.3.

Mean annual tide free circulation at 15 m depth obtained with NEMO-
OPA and MOHID are hard to be compared. NEMO-OPA is run without
tide and MOHID is run with tide. NEMO-OPA does the average of daily
instantaneous results, while MOHID performs an online integration for each
time-step. Thus please bear in mind that MOHID displays the residual cir-
culation with tide and NEMO-OPA displays the residual circulation without
tide.

The globally cyclonic PSY2V1 circulation of the abyssal plain, which
contours two anti-cyclonic eddies, presents an excessively intense slope cur-
rent (that is an already known error of this model). On the shelf however,
circulation is overall anti-cyclonic. The mean circulation of the other mod-
els, although preserving the same overall cyclonic/anti-cyclonic feature, has
qualitatively and quantitatively very distinct traits, namely on the position-
ing and the intensity of each recirculation pattern. Lack of current data

218

figures/bay/image053-0.eps
figures/bay/image055-0.eps


5.2. THE BAY OF BISCAY INTER-COMPARISON

doesn’t allow assessing which model is best. However, the efficiency of the
numerical schemes at the OB can be discussed for each model.

As the models evolve and the fields diverge further and further away from
the reference solution, due to better atmospheric forcings and better resolu-
tion, over-relaxation of salinity and temperature tends to create an artificial
front all along the OB that will tend to generate spurious geostrophic resid-
ual flow. This residual geostrophic flow will store available potential energy
(APE) and enstrophy generated inside the domain, while isolating wave-like
information from propagating out-ward and in-ward the domain, thus also
deprecating the interior solution away from the OB. Thus the relaxation
decay-times are a critical aspect that must be parameterized for each model
and each reference solution. They are ill-defined when a geostrophic flow
occurs at the OB and when permanent fronts are created after a long enough
period of simulation. MOHID was over-relaxed compared to NEMO-OPA
by a three-fold factor at the OB, and also used a wider relaxation zone.
However NEMO-OPA uses a constant decay-time all along its relaxation
zone, while MOHID uses an exponentially growing relaxation time directed
away from the OB. As for the results, figure 5.2.3 clearly shows a spurious
current in the northern boundary for both models, but much more intense
in MOHID, probably due to the relaxation coefficients difference and the
wider relaxation area. This is the indication of an intense front generated
between the PSY2V1 solution and both models solution, possibly due to an
excessive relaxation of the salinity and temperature fields. However, both
models perform better at the western boundary, even if MOHID shows the
recirculation much more to the interior of the domain. This is probably
due to higher relaxation periods and the 30 cells wide relaxation zone that
confines the recirculation more on the interior of the domain. Finally, even
if MOHID doesn’t show a clear spurious geostrophic flow along the OB, it
does accuse in figure 5.2.3 a spurious OB front that doesn’t show in NEMO-
OPA. Probably MOHID is also over-relaxing the salinity and temperature
fields at the western OB. Since the rivers runoff are absent in MOHID, the
fronts are absent as well and, thus, the model doesn’t show the geostrophic
frontal anti-cyclonical recirculation over the shelf, along the coastline, that
feeds, in the warmpool zone, the abyssal plain cyclonical recirculation, as
seen in PSY2V1 and in NEMO-OPA. A second run is being made that will
address all these issues in MOHID: adding the river runoff, shortening the
relaxation zone, and increasing by a threefold factor the decay time at the
western boundary and by a sixfold factor at the northern boundary. This
should correct all the OB issues and, expectedly, yield results quite similar
to the NEMO-OPA solution.
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Figure 5.20: Yearly average tide-removed EKE and velocity fields during
2004 at 15 m depth. Top left panel, PSY2V1. Top right panel, NEMO-
OPA. Bottom panel, MOHID.
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Vertical mixing

In this section, models results are compared against surface buoys tem-
perature data. The buoys are distributed in the Bay of Biscay as shown
in figure 5.2.3. There are three types of buoys: i) the buoys moored on
the shelf, such as Ushant, Cherbourg and Minquiers; ii) the buoys moored
in deep waters, such as Gascogne and Brittany; iii) and finally, the buoys
moored on the slope, near the shelf, such as VillanoSisargas, EstacaBares
and CaboPenhas. The models performance is expected to remain consistent
within each type of buoy, but it can differ completely between the different
types of buoys. This is partly due to the influence of the tide and the verti-
cal mixing it induces. Also, the Cherbourg buoy (figure 5.2.3), is very close
to the OB, and falls in a relaxation area and/or a sponge area (this is the
MOHID case). This means that the accuracy of the models results can be
degraded near the sponge area.

Tide will induce vertical mixing. This tide-induced mixing is expected
to be more intense on the shelf, than on the abyssal plains, since the tidal
barotropic velocity is much more intense over the shelf as a consequence of
the reduced depth. Hence we can expect for thicker mixed layers over the
shelf than over abyssal plains. Thus models run with tide will present cooler
SST over the shelf than models run without tide. This should be particularly
true for the NEMO-OPA model, as they have a fine vertical discretization
of the superficial 50 m depth, with its superficial layer of only 0.5 m to 1 m
depth. Hence it can resolve accurately the mixed-layer. MOHID, however,
has a superficial layer 8 m thick. This means that the minimum mixed layer
depth will be of 8 m. Hence, MOHID will tend to present cooler SST over
deep waters. This bias will be less noticed on shelf waters, however, due
to the stronger tide-induced mixing. On deep waters, the barotropic tide
and the bathymetry can induce internal tides; which in turn, enhance the
vertical mixing. To illustrate the influence of tide on vertical mixing, results
of NEMO-OPA with tide and without tide were compared against in-situ
surface buoys. Results of MOHID with tide are also presented to compare
both models.

In figures 5.2.3 and 5.2.3, the model results with tide (blue line) are di-
rectly comparable with the buoy (black line) and the satellite data (black
dots). The NEMO-OPA results without tide are also displayed to evidence
the mixing induced by the barotropic tide. The more intense summer solar
flux tends to create a stratified seasonal thermocline, which in turn, presents
higher temperatures at the surface. However this seasonal surface stratifica-
tion is destroyed with tide-induced mixing. Hence, the NEMO-OPA results
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Figure 5.21: Buoys (left panel) and tidal stations (right panel) positions.

with and without tide decorrelate during the months of May to September.
Furthermore, MOHID results are consistently cooler relative to NEMO-OPA
results with tide. At Cherbourg, the NEMO-OPA results with tide follow
more closely the buoy’s results, while at Minquiers it’s rather the MOHID
results that follow slightly more closely the buoy’s results.

Tables 5.2.3 to 5.2.3 summarize the results for the 8 buoys whose lo-
cations are in the left panel of figure 5.2.3. The tables contain the yearly
average, the correlation, the standard deviation and the RMSE between the
models and the observations. The standard deviation here is the average
error minus the average bias. On the overall both models exhibit similar
statistics, NEMO-OPA performs slightly better on some buoys and MOHID
performs slightly better on the other buoys.

The June 15th MODIS satellite SST shows a good cloud-free coverage of
the area while evidencing clear frontal structures. The comparisons of this
satellite image with the models are presented in figure 5.2.3. Figure 5.2.3
contains the same images but the average bias was removed from the models
results.

There is a lot of information to be taken from that satellite SST. The
lower temperatures on the north shelf (which includes the Ushant front)
are highly correlated with strong tidal currents and indicate an area where
tidal mixing is maximal. Along the northern part of the continental slope,
a thermal front is formed induced by internal waves mixing. The rest of
the French continental shelf presents warmer waters and upwelling between
the Landes and the mouth of Gironde’s estuary. A large upwelling seems
to be occurring along the Spanish coast in the models, and probably in the
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Figure 5.22: Comparison of SST time series between data from the Cher-
bourg buoy (black line), model results without tide (red line), and model re-
sults with tide (blue line). Black dots represent data from cloud-free MODIS
images. Left panel, NEMO-OPA. Right panel, MOHID.

Figure 5.23: Comparison of SST time series between data from the Min-
quiers buoy (black line), model results without tide (red line), and model re-
sults with tide (blue line). Black dots represent data from cloud-free MODIS
images. Left panel, NEMO-OPA. Right panel, MOHID.
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Table 5.8: Statistical comparison in temperature between the models and
the Brittany buoy.

Brittany NEMO-OPA MOHID
Temperature (oC)

In-situ average SST 14.315 14.315
Average SST TIDE 14.537 14.045
Average SST NOTIDE 14.568 14.045
Standard deviation from in-
situ TIDE

0.532 0.448

Standard deviation from in-
situ NOTIDE

0.547 0.448

RMSE from in-situ - TIDE 0.532 0.523
RMSE from in-situ - NOTIDE 0.545 0.523

Brittany NEMO-OPA MOHID
Correlation

Correlation TIDE 0.986 0.982
Correlation NOTIDE 0.992 0.982

Table 5.9: Statistical comparison in temperature between the models and
the Cabo Penhas buoy.

Cabo Penhas NEMO-OPA MOHID
Temperature (oC)

In-situ average SST 15.42 15.42
Average SST TIDE 15.754 15.456
Average SST NOTIDE 15.943 15.456
Standard deviation from in-
situ TIDE

0.518 0.520

Standard deviation from in-
situ NOTIDE

0.519 0.520

RMSE from in-situ - TIDE 0.616 0.521
RMSE from in-situ - NOTIDE 0.736 0.521

Cabo Penhas NEMO-OPA MOHID
Correlation

Correlation TIDE 0.985 0.985
Correlation NOTIDE 0.987 0.985
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Table 5.10: Statistical comparison in temperature between the models and
the Cherbourg buoy.

Cherbourg NEMO-OPA MOHID
Temperature (oC)

In-situ average SST 12.67 12.67
Average SST TIDE 12.692 12.509
Average SST NOTIDE 13.315 12.509
Standard deviation from in-
situ TIDE

0.524 0.729

Standard deviation from in-
situ NOTIDE

0.709 0.729

RMSE from in-situ - TIDE 0.525 0.746
RMSE from in-situ - NOTIDE 0.959 0.746

Cherbourg NEMO-OPA MOHID
Correlation

Correlation TIDE 0.989 0.981
Correlation NOTIDE 0.981 0.981

Table 5.11: Statistical comparison in temperature between the models and
the Estacabares buoy.

Estacabares NEMO-OPA MOHID
Temperature (oC)

In-situ average SST 15.776 15.776
Average SST TIDE 16.182 15.967
Average SST NOTIDE 16.467 15.967
Standard deviation from in-
situ TIDE

0.418 0.568

Standard deviation from in-
situ NOTIDE

0.521 0.568

RMSE from in-situ - TIDE 0.582 0.560
RMSE from in-situ - NOTIDE 0.866 0.560

Estacabares NEMO-OPA MOHID
Correlation

Correlation TIDE 0.990 0.982
Correlation NOTIDE 0.987 0.982
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Table 5.12: Statistical comparison in temperature between the models and
the Gascogne buoy.

Gascogne NEMO-OPA MOHID
Temperature (oC)

In-situ average SST 15.922 15.922
Average SST TIDE 15.934 15.403
Average SST NOTIDE 15.996 15.403
Standard deviation from in-
situ TIDE

0.304 0.402

Standard deviation from in-
situ NOTIDE

0.294 0.402

RMSE from in-situ - TIDE 0.304 0.656
RMSE from in-situ - NOTIDE 0.303 0.656

Gascogne NEMO-OPA MOHID
Correlation

Correlation TIDE 0.996 0.994
Correlation NOTIDE 0.996 0.994

Table 5.13: Statistical comparison in temperature between the models and
the Minquiers buoy.

Minquiers NEMO-OPA MOHID
Temperature (oC)

In-situ average SST 11.797 11.797
Average SST TIDE 12.009 11.591
Average SST NOTIDE 12.670 11.591
Standard deviation from in-
situ TIDE

0.478 0.317

Standard deviation from in-
situ NOTIDE

1.045 0.317

RMSE from in-situ - TIDE 0.523 0.378
RMSE from in-situ - NOTIDE 1.362 0.378

Minquiers NEMO-OPA MOHID
Correlation

Correlation TIDE 0.997 0.996
Correlation NOTIDE 0.991 0.996
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Table 5.14: Statistical comparison in temperature between the models and
the Ushant buoy.

Ushant NEMO-OPA MOHID
Temperature (oC)

In-situ average SST 14.329 14.329
Average SST TIDE 13.638 13.344
Average SST NOTIDE 14.294 13.344
Standard deviation from in-
situ TIDE

0.672 0.805

Standard deviation from in-
situ NOTIDE

0.619 0.805

RMSE from in-situ - TIDE 0.964 1.272
RMSE from in-situ - NOTIDE 0.620 1.272

Ushant NEMO-OPA MOHID
Correlation

Correlation TIDE 0.968 0.954
Correlation NOTIDE 0.97679 0.954

Table 5.15: Statistical comparison in temperature between the models and
the Villano-Sisargas buoy.

Villano-Sisargas NEMO-OPA MOHID
Temperature (oC)

In-situ average SST 15.325 15.325
Average SST TIDE 15.648 15.651
Average SST NOTIDE 15.977 15.651
Standard deviation from in-
situ TIDE

0.865 0.630

Standard deviation from in-
situ NOTIDE

0.849 0.630

RMSE from in-situ - TIDE 0.923 0.710
RMSE from in-situ - NOTIDE 1.071 0.710

Villano-Sisargas NEMO-OPA MOHID
Correlation

Correlation TIDE 0.936 0.967
Correlation NOTIDE 0.953 0.967

227



CHAPTER 5. APPLICATION AND ASSESSMENT TO REAL-WORLD
CASE STUDIES

Figure 5.24: SST MODIS comparison with the models NEMO-OPA and
MOHID for the June 15th. Top-left panel, MODIS image. Top-right panel,
NEMO-OPA model. Bottom panel, MOHID model.

Satellite data despite the cloud cover.

The NEMO-OPA model reproduces appropriately the thermal structures
described above. The MOHID results seem to evidence a less variability than
could be expected. This may be due to the coarse vertical discretization at
the surface. Also, the model is relaxing too strongly to the reference PSY2V1
solution at the western OB. MOHID relaxation time is around 30000 s while,
NEMO-OPA are around 90 000 s (1 day). This creates an artificial thermal
and haline front at the western OB that will create a spurious geostrophic
current inside the domain.

The Ushant front can be well described by satellite imagery even though
it is a near-shore process. Cloud-free events were spotted by MODIS near
the area on June 3rd (figure 5.2.3) and on July 6th (figure 5.2.3) and were
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Figure 5.25: SST MODIS comparison with the models NEMO-OPA and
MOHID for the June 15th. Top-left panel, MODIS image. Top-right panel,
NEMO-OPA model. Bottom panel, MOHID model. The SST average dif-
ference between the models and MODIS was removed.
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compared with the models with and without bias towards MODIS. Also, the
temperature zonal section at 48.15oN (bounded by 6oW to 4oW) is compared
with the literature in the rightmost panels of figures 5.2.3 and 5.2.3 for the
same dates.

Figures 5.2.3 and 5.2.3 represent the Ushant front, composed of two cold
lobes. Both models represent them correctly qualitatively. However, due to
the 8 m thick superficial layer, MOHID results are too cold. But, even with
the bias corrected (middle panel), MOHID results are still a bit cold for the
June 3rd snapshot. The vertical sections are consistent with the scientific
description found in the literature for both models.

The offshore distance of the front is an important characteristic of the
region. Thus, Hovmuller diagrams along the section SST were created for
each model and for the satellite data (figure 5.2.3). To be able to compare
the diagrams between model and satellite, the minimum SST was removed
from each diagram. Figure 5.2.3 represents the time evolution of temper-
ature minimum in the left panel, in order to representing the temperature
evolution of the front. Right panel of figure 5.2.3 represents the time evolu-
tion of the position of the temperature minimum, in order to represent the
evolution of the front’s position.

Observations on the left-panel of figure 5.2.3 show that the minimum
of temperature is leaned on the coast during the winter period (January to
April and November to December), and is situated around the 5.1oW during
the summer period (May to October). During this period, the temperature
differences clearly show the presence of a front. During the April and Oc-
tober months, we observe a transient period between the winter/summer
states that is characterized by a homogeneous SST.

The results obtained with both models are very consistent showing clearly
the seasonal migration of the front. The temperature gradient maxima,
however, during summer are too weak for NEMO-OPA, and too strong for
MOHID; whereas during winter, they are far too strong for MOHID, and
slightly too strong for NEMO-OPA. Finally, the front in MOHID is too thin
during winter.

The left panel of figure 5.2.3 shows that, again, the MOHID SST is cooler
than the NEMO-OPA SST, probably because of its thick over-mixed super-
ficial layer. However both models results seem to correlate very well with the
MODIS data with what looks like an acceptable RMSE. The right panel of
figure 5.2.3 shows the evolution of the front position, represented by the SST
minimum, between two states, winter and summer. Both NEMO-OPA and
MOHID evolve in phase with the obersvations between the winter/summer
states. MOHID however performs somewhat better during the transient
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5.2. THE BAY OF BISCAY INTER-COMPARISON

Figure 5.26: June 3rd event in the Ushant area. Top panels: MODIS and lit-
terature data. Middle panels: NEMO-OPA results. Bottom panels: MOHID
results. Left panels: SST. Center panels: SST with the average difference
with MODIS removed. Right panels: Cross-section at 48.2oN, between 6oW
and 4oW.
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CHAPTER 5. APPLICATION AND ASSESSMENT TO REAL-WORLD
CASE STUDIES

Figure 5.27: July 6th event in the Ushant area. Top panels: MODIS and lit-
terature data. Middle panels: NEMO-OPA results. Bottom panels: MOHID
results. Left panels: SST. Center panels: SST with the average difference
with MODIS removed. Right panels: Cross-section at 48.2oN, between 6oW
and 4oW.
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5.2. THE BAY OF BISCAY INTER-COMPARISON

Figure 5.28: Hovmuller diagrams of the temperature offset relatively to
the minimal temperature found along the Ushant section (6oW to 4oW at
48.15oN), of the MODIS SST (leftmost panels) and the models SST (middle
panel and rightmost panel).

Figure 5.29: left panel: Minimum SST evolution of the Ushant section sec-
tion (6oW to 4oW at 48.15oN). Right panel: Position evolution of the SST
minimum in the Ushant section (right panel).
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months of April and October.

Figure 5.2.3 shows that this cold water body is present in the extrapo-
lated/interpolated climatology (top right). The model results (bottom pan-
els) show the presence of the cold water body. However, the MOHID solution
doesn’t show the folding isopycnics as clearly as does the NEMO-OPA so-
lution. The main reason is that the surface stratification in MOHID cannot
be as strong as in NEMO-OPA because of the lack of vertical resolution in
the surface and, second, because of the absence of river runoffs. A freshwa-
ter plume would intensify the stratification at the surface and inhibit the
vertical mixing of the cold water body, thus preserving its form and enhanc-
ing the isopycnics folding. This is not the case in NEMO-OPA that does
represent more accurately the cold water body.

Sections were built from data from the PELGAS (figure 5.2.3) and
EVHOE (figure 5.2.3) cruises. Both sections show the presence of a cold
water body. In the PELGAS case (figure 5.2.3), the NEMO-OPA model re-
produces quite well the cold water body, with a clear sign of the isopycnics
folding; while MOHID tends to be colder overall and shows less evidence of
isopycnic folding. In the EVHOE case (figure 5.2.3), MOHID is qualitatively
in better agreement than NEMO-OPA, although both models solutions are
warmer than the measurements.

Upwellings

There are two upwelling areas in the Bay of Biscay: off the coasts of south-
western France, and North-east of the Spanish coast. Several diagnostics are
available for measuring upwelling, and none is more relevant than another.
In this work, an upwelling index was calculated at latitudes 44oN, 44.5oN and
45oN, representing the SST differences between 1.9oW and 1.4oW, 1.9oW
and 1.3oW and 2.2oW and 1.3oW respectively, as seen in figure 5.2.3. Mod-
els have similar behaviours, except at latitude 44oN (middle panels of fig-
ure 5.2.3), where MOHID fails to show upwelling events as seen on measure-
ments. Both models manage to resolve some measured upwelling events, but
not all. This could be due to the weak wind resolution, and the consequent
loss of fine-resolution wind vorcitity, that is known to be relevant to induce
coastal upwelling.

The warmpool

The warmpool is a surface heat convergence area between south-western
France and north-eastern Spain. Thus it is defined as the region with an
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5.2. THE BAY OF BISCAY INTER-COMPARISON

Figure 5.30: Cross-section from 46oN, 4oW to 47.2oN, 2.8oWof the la Vasière
cold water mass during August. Temperature comparison between literature
(top left), climatology (top right) and the models (bottom).
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Figure 5.31: Cross-section from 46.5oN, 5oW to 47.6oN, 3oWof the la Vasière
cold water mass during PELGAS campaign. Temperature comparison be-
tween PELGAS (top left), NEMO-OPA (top right) and MOHID (bottom).

236

figures/bay/image131-0.eps
figures/bay/image133-0.eps
figures/bay/image135-0.eps
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Figure 5.32: Cross-section from 46.3oN, 4.4oW to 47.1oN, 2.4oW of the
la Vasière cold water mass during EVHOE campaign. Temperature com-
parison between EVHOE (top left), NEMO-OPA (top right) and MOHID
(bottom).
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Figure 5.33: Upwelling indexes measured and modelled by NEMO-OPA
(top panels) and MOHID (bottom panels) at latitudes 44◦N (left), 44.5◦N
(center) and 45◦N (right) between May and September. Superposed are the
results from NAR (square), NEVIRI (triangle), MODIS (cross) and MODIS
Acqua (vertical cross) satelitte SST imagery.
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5.2. THE BAY OF BISCAY INTER-COMPARISON

Figure 5.34: Comparing MODIS warmpool (grey area) with the models
(red contour and temperature colour scale) NEMO-OPA (left) and MOHId
(right) between the 20th and the 30th August.

SST 1.5oC higher than the SST of point 7oW 45oN. Figure 5.2.3 shows
the comparison between the warmpool measured by MODIS satellite im-
ages (grey area) and the warmpool modelled by NEMO-OPA and MOHID
(red contour) over the period comprised between the 20th and the 30th
August. Both MOHID and NEMO-OPA provide similar results, but they
tend under-estimate the measured warmpool area (MOHID under-estimates
slightly more due to its 8 m thick surface layer that tends to over-mix tem-
perature near the surface).

Figure 5.2.3 compares the yearly evolution of the warmpool area (in
number of domain cells) of the model (black line) against MODIS (blue
line). The blue squares provide the percentage of cloud free area in the
MODIS images. Higher percentage means a clearer satellite view and, thus,
a more reliable comparison.

Both models generally under-perform by under-estimating the width of
the warmpool, except for the October and November months. The July
peak in MODIS data is remarkably absent in the models. Other than that,
the models try to correlate with the other peaks, but the apparent RMSE
seems quite large.

In figure 5.2.3 is shown the yearly evolution of the average SST in the
warmpool zone bounded by (4oW to 1oW and 43.5oN to 45oN) of the models
(black lines) and of the MODIS snapshots (red dots with error bars). The
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Figure 5.35: Time evolution of the number of cells (vertical axis on the left)
defining the warmpool by MODIS (blue line) and by the models (black line).
The blue squares stand for the cloud-free area percentage (vertical axis on
the right). NEMO-OPA results are on the left panel and MOHID results
are on the right panel.

error bar is proportional to the cloud-cover area. The temperature variations
are approximately well represented by the models, when compared with the
MODIS data, although MOHID looks slightly colder, probably because of
its over-mixed 8 m thick superficial layer.

5.2.4 Conclusion

As a general conclusion relative to the intercomparison of models, we can
say that NEMO-OPA tends to follow more closely the reference PSY2V1
solution than MOHID. This should be expected since both PSY2V1 and
NEMO-OPA share the same source-code. MOHID is generally colder at the
surface because of its thicker 8 m depth surface layer that over mixes the
surface water. Also, no river run-offs were present in the MOHID simulation,
which deteriorated the stratification over the shelf and consequently deteri-
orated the cold water body characteristics at the la Varsière area. Also, the
shelf SST PELGAS and EVHOE data were not interesting to compare with
at all for the same reason. MOHID tends to show much less vertical mixing
than PSY2V1 or NEMO-OPA, thus creating a stratification dipole in the
MW depth and down to 3000 m depth. Otherwise, both models seem to
perform quite well, when compared against exhibited in-situ data. On the
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5.2. THE BAY OF BISCAY INTER-COMPARISON

Figure 5.36: Average temperature comparison between MODIS (red) and
the models (black) NEMO-OPA (left panel) and MOHID (right panel) in
the area bounded by 4◦W and 1◦W and by 43.5N and 45N. The error bars
(in red) are proportional to the cloud-coverage percentage for the area.

downside, MOHID exhibits a too stiff relaxation at the western OB which
generates an intense spurious residual geostrophic current. A new run with
MOHID is underway with a finer vertical discretization at the surface, river
runoffs, and a looser relaxation time at the OB.

For the purpose of downscaling techniques applied to OGCM, the tech-
niques used, independently, by both teams IST and Mercator-Océan proved
to be quite similar, differing only in the parameterization terms (such as
the relaxation times near the OB, which would influence the quality of the
results), and in the numerical schemes. Other initialization techniques could
have been tested, such as geostrophic currents initialization. These down-
scaling techniques, designed to be used with an OGCM in offline, seem
to evidence the feasibility of successfully implementing operational systems
that can forecast the circulation of regions nested in the OGCM domain,
while adding more physics, such as tide, and freshwater river runoffs, im-
proving the existing physics, such as the atmospheric forcing, and yet, yield
realistic results. It can be expected to see the implementation of operational
regional circulation systems in the years to come; using as offline OGCM
the Mercator-Océan forecast solution.
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Chapter 6

Conclusion

This thesis studied the possibility of proposing a diagnostic scalar quantity
to assess absorbing and radiative open boundary conditions in the scope of
regional Ocean modeling. The scalar proposed in this thesis is the scalar
of Okubo-Weiss, firstly studied independtly by Okubo (1970) and Weiss
(1991), which provides a quick and computationally economic insight on the
nature of the flow. It is known that walled boundaries yield elliptic type
of flows, whereas areas without boundaries are more prone to hyperbolic
eulerian flows. The scalar of Okubo-Weiss easily help diagnose a poor im-
plementation of a boundary condition by accusing an over-elliptic flow, due
to undesired reflection of at the boundarie of exiting wave-like perturbations,
where otherwise it would have been a predominantly hyperbolic flow.

It is well known that academic test-cases, although they may be exhaus-
tively analyzed and explained, will yield contrary skill assessment to a wide
variety of OBCs when compared with their implementation counterpart in
realistic complex regional Oceanic models. Hence this thesis needed, be-
yond academic test-cases, to model realistic regional Ocean domains where
the Okubo-Weiss scalar could be given its full expression.

MOHID, which is a full suite of numerical tools for water modeling
providing an integrated approach to model any water system to the sub-
planetary scale, was the model of choice to implement the realistic regional
Ocean models. MOHID is a rising tool for regional Ocean modeling (Leitão
et al., 2005; Riflet et al., 2007b, 2008), nevertheless, some prior un-exhaustive
tests to validate MOHID as a capable model to handle regional Ocean phys-
ical processes were undertaken.

243



CHAPTER 6. CONCLUSION

The turbulence model in MOHID for the vertical axis was tested in a one-
year scenario in an open unbounded Ocean region located at station Papa.
This location was chosen due to its large availability of in-situ data. The
test revealed that a correction in the Brunt-Vaisalla frequency was required
in order for MOHID to yield accurate results. Otherwise, an excessive strat-
ification during the Summer season was occuring. The turbulence model for
the vertical axis in MOHID is the GOTM.

The freshwater cylinder experiment of Tartinville et al. (1998) allowed
to test and select the best advection scheme (TVD with a superbee flux
limiter). It also allowed to test some relaxation OBC schemes. FLA+FRS
with a sponge layer proved to provide the best results.

A shallow-water equations model was developed in Matlab in the scope of
implementing and testing several OBC schemes. The SWE model featured
complex bathymetry and land-masks, Coriolis force, wind and bottom stress,
no-slip, closed wall, Flather and gravity wave explicit radiation OBCs. It
proved to be a powerful and versatile tool to study simple test-cases which
could easily be validated against simple dimensional analysis and simple ge-
ometrical considerations. In occurence, a gaussian bump initial elevation
was thoroughly studied and interesting relations were deduced, such as the
Froude number being equal to the ratio of bump elevation agains water
depth, and such as the characteristic time of energy dissipation being equal
to Tσ = ν

σ2
.

The devised numerical experiments consider the basic approach of the
large-model/small-model, where a smaller finer or equal resolution model
is nested into a larger coarser resolution model. That way, a reference un-
bounded local flow is always available to compare with the smaller-scale
bounded flow and thus provide maximum effectiveness when using the OW
scalar in assessing the quality of the OBC prescribed in the small-model.

The shallow-water large-model/small-model experiment yielded a per-
sisting elliptic boundary layer when using a simple GWE (gravity wave
explicit) and GWE+FLA radiative OBC, detected by the OW scalar. Test-
ing several boundary conditions, the OW scalar helps to averiguate the best
condition for the present system.

The regional models chosen were Western Iberia, for the whole year pe-
riod of 2007, and the Bay of Biscay, for the whole year period of 2004.
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Both models were the downscaling of the Mercator-Océan solution of the
North-Atlantic. Both models had realistic atmospheric forcing coming from
MM5-ist and from Aladdin, respectively. Both models had realistic time se-
ries of the main rivers for their respective regions. The Western Iberia model
was validated specifically concerning the presence, depth and behaviour of
the MW veins (Riflet et al., 2007b,a), and it served as the basis later for the
present operational forecasting system (Riflet et al., 2008), the PCOMS. A
master thesis study on the water masses and the fluxes distributions over
the Western Iberian region was performed and monitored during the course
of the thesis as well.

The Bay of Biscay regional Ocean model was intercompared with an-
other regional Ocean model, NEMO-OPA. Both models yielded interesting
results, though MOHID showed better results for the SST comparison with
satelite imagery. This is probably due to the cruder vertical resolution at the
surface of 2 to 4 meters thichness compared to NEMO-OPA who displays a
0.5 thin layer at the surface. The conclusion of the inter-comparison is that
the MOHID model performs quite well, as any other widespread regional
Ocean model under the same forcing conditions.

The Okubo-Weiss parameter is yet to be applied to these models, offline.
The expected results to appear are the detection, via the Okubo-Weiss scalar
diagnostic, of systematic regions where flow type inversions occur (from hy-
perbolic to elliptic, mostly, but also the other way around) for specific type
of boundary conditions. It is expected that the OW scalar be of help as a
tool to prescribe alternative configurations to the OBCs, since changing the
type of absorbing or radiating scheme (Herzfeld, 2009; Lavelle and Thacker,
2008), to changing the limits of the domain. Another interest aspect of this
scalar is that it can be run offline, even after the model was run.

Finally, and as a sideline feature, this thesis proposes an extension and
deeper insight on the Reynolds transport theorem, which is a fundamental
theorem at the basis of the eulerian formulation of the broad continuum
mechanics discipline, with a full suite of proved properties, which may have
interesting applications in the multi-phasic fluid flows (Collado, 2007; Bren-
ner, 2005a) or, perhaps, in cases where the control volumes evolve in time,
such as the case of free surface numerical models of the primitive Ocean
equations.
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Appendix A

Topics on geometry

A.1 The divergence theorem

A.1.1 Defining the problem

Often in physics, one wishes to calculate the flux of some vectorial quantity
flowing through a given cross-section. Such local monitoring provides more
insight on the wider area beyond the cross-section. Furthermore, many
times, it is required to calculate the flux through a closed surface. Of this
necessity derives the famous divergence theorem.

A.1.2 Defining the geometry

Consider R3, an origin O and a cartesian reference frame composed by the
unit vectors i, j, k which yield in cannonical coordinates (1, 0, 0), (0, 1, 0),
and (0, 0, 1).

Consider a vector-field of R3, E = (Ei, Ej , Ek).

Consider Ω, a connex open subset of R3.

Consider ∆Ω, an element of volume of Ω, whose shape is defined by the

edges
~~∆ ≡ (∆x i,∆y j,∆z k), whose volume is given by ∆Ω = ∆x∆y∆z

and whose position P yields coordinates (Pa, Pb, Pc) fixed at its volumic
center.

Let the orientation of ∆Ω be given by its faces outwards unit vectors
njk = −nkj = (1, 0, 0), nik = −nki = (0, 1, 0), nij = −nji = (1, 0, 0).
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Figure A.1: Cartesian element of volume ∆Ω of width, length and height of
∆x, ∆y and ∆z, respectively. The local uniform vector field E is represented
in the volume’s center of coordinates P = (Pi, Pj , Pk).

A.1.3 Calculating the flux of E through one elemental vol-

ume

The flux φ of E through the surface of ∆Ω can be calculated in the coor-
dinates of the cartesian reference frame. It consists of the sum of the flux
through each of the six faces of ∆Ω, whose geometric centre is given by Pij ,
and its value is given in equation A.1.

φ =
∑

i 6=j
E · nij ∆xi∆xj . (A.1)

Working out equation A.1, yields:
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A.1. THE DIVERGENCE THEOREM

φ =
∑

i 6=j
E|Pij · nij ∆xi∆xj,

=
∑

i<j, i 6=k, j 6=k

(
Ek|Pk+1/2

− Ek|Pk−1/2

)
∆xi∆xj ,

=
∑

i<j, i 6=k, j 6=k

(
Ek|Pk+1/2

− Ek|Pk−1/2

)

∆xk
∆xi∆xj ∆xk, (A.2)

where Pij is the centred point in nij’s face, of coordinates defined in
equation A.3.

Pij ≡ P +
~~∆ · nij

2
,

= (Pi, Pj , Pk) + (0, 0, ∆z/2),

= (i∆x, j∆y, k∆z) + (0, 0, ∆z/2),

= (i∆x, j∆y, (k + 1/2)∆z) ,

≡
(
Pi, Pj , Pk+1/2

)
. (A.3)

But of course, what’s the point of calculating equation A.1? Well the
flux happens to solve a very interesting problem in physics. Given a fluid
and given a cross-section through which the fluid flows, the problem lies
in determining how much of fluid is flowing through that cross-section. Or,
stating it differently, how much volume of water is flowing through the cross-
section per unit of time? One can experimentate easily at home, and realize
that the volume of fluid that flows through the cross-section per unit of
time varies accordingly with the angle that the cross-section makes with the
direction of the flow. If the fluid flows perpendicular to the cross-section’s
plane, then the volume of water is maximum. If the fluid flows tangentially
to the cross-section’s plane, then the water flows by the cross-section, but not
through, thus yielding a null flow, or null volume of water per unit of time.
Also, if one intensifies the velocity of the flow, then the volume of water that
flows through the cross-section per unit of time also intensifies. And if one
diminishes the velocity of the flow, then the volume per unit of time decreases
accordingly. Finally, if the cross-section area is increased, then the volume
of water that flows per unit of time increases. And if the area is decreased,
the volume of water that flows per unit of time decreases. These simple
experiments allow the amateur-physicist to speculate that the volume of
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fluid (
[
m3
]
) that flows through the cross-section per unit of time (

[
m3/s

]
),

depends on the velocity of the flow ([m/s]), on the area of cross-section
(
[
m2
]
) and on the angle of the flow direction with the cross-section plane

(represented by the internal product of the fluid velocity vector-field with
the normal vector to the cross-section’s plane, v · n). Thus, our intuition,
built from the experimentations, allows to put forward the relation proposed
in equation A.4.

[Flow] = a [Velocity modulus]m ∗ b [Area]n

∗c [Velocity/Cross-section Angle]p . (A.4)

The dimensional counterpart of equation A.4 is equation A.5.

[
m3 s−1

]
=
[
ms−1

]m ∗
[
m2
]n
. (A.5)

There’s a basic general guideline, in determining Nature’s principles,
that states that between two plausible laws of Nature regulating the same
phenomena, often the simpler and more elegant is correct. Thus, from all
the valid combinations of (m, n, p) in equations A.4 and A.5, (1, 1, 1) is
the most likely hypothesis. By resorting to experimentations, one tries to
falsify the hypothesis. However one soon realizes that, in this case, the
hypothesis stands unfalsified, and is, thus, proposed as a law of Nature. Note
however that (m, n) = (1, 1) was the only valid hypothesis for the powers
of quantities of equation A.5. Next, the dimensionless coefficients (a, b, c)
must be determined. Again, one must experiment. Experimentations, so
far, have shown that equation A.4 holds when (a, b, c) = (1, 1, 1). Hence,
a way to compute the volume of water that flows through the cross-section,
per unit of time, shown in equation A.6, has been scientifically determined.
It requires the knowledge of the fluid velocity, the cross-section area and the
angle between the flow direction and the cross-section.

Definition 4. The flux of a vector-field through an element of area is linearly
proportial to the area of the element, the intensity of the vector-field, and
the angle between the vector-field direction and the element’s plane.

Φ = Av · n. (A.6)

Definition 4 was used to calculate equation A.1, that yields the flux of a
vector-field, similar to a fluid velocity vector-field, through the six faces of a
cube. By conventioning that ingoing flux is negative and that outgoing flux
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is positive, then, if the sum of all the fluxes in equation A.1 yields positive,
then there is more flow outgoing from the box than ingoing. This means
that there must be some source of flow inside the box. If it yields negative,
then there is more flow ingoing than outgoing, and this means that a sink
term of flow must lie inside the box. If the net flux yields null, then either
the source and sink terms balance each other, either there are no source and
sink terms inside the box. The net flux, as described herein, is also known
as the divergence of the vector-field.

A.1.4 Summing the infinitesimal elements of the open set

Now consider a unit partition of Ω into elements of volume ∆Ω, such that
Ω =

⋃
a∆Ωa. In particular, consider a cartesian partition where each ∆Ω =

∆x∆y∆z. Finally, consider the surface of ∆Ω that belongs to the open
boundary condition.

Proposition 1. The sum of the fluxes on the faces of all the elements of
volume of Ω, is equal to the sum of the fluxes on all the faces of the boundary
of Ω, ∂Ω. ∑

∆Ω ∈ Ω

φ =
∑

∆∂Ω ∈ ∂Ω

φ. (A.7)

Proof. The geometry of the problem is such that, ∀∆Ω ∈ Ω, each face ij of
element volume ∆Ω not on the open boundary of Ω, ∂Ω, is shared with one,
and only one, other element volume ∆Ω

′
, and their normal vectors to the

face are symmetric. Thus, the fluxes of the vector-field through the face, for
both volumes, are equal, because they are evaluated at the same point; and
of opposite signs, because the normal vectors are symmetric. Hence, when
summed, they zero out. Hence, if we sum all the fluxes of all the elemental
volumes ∆Ω of the open set Ω, all the faces fluxes will zero out, except those
on ∂Ω.

Theorem 1. The divergence theorem states that the flow of a vector-field
over the boundary of a volume, is equal to its divergence integrated over the
volume. ∮

∂Ω
E · n d (∂Ω) =

∫

Ω
∇ ·E dΩ. (A.8)

Proof. By inserting equation A.1 into the right-hand side of equation A.7
and equation A.2 into the left-hand side of equation A.7, equation A.9 is
obtained.
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∑

∆Ω/∆x ∈ ∂Ω

∑

i 6=j
E · nij ∆xi∆xj = (A.9)

∑

∆Ω ∈ Ω

∑

i<j, i 6=k, j 6=k

(
Ek|Pk+1/2

− Ek|Pk−1/2

)

∆xk
∆xi∆xj ∆xk. (A.10)

Then, by taking the limit when
~~∆ → 0, equation A.11 is obtained.

lim
~~∆→0

∑

∆∂Ω ∈ ∂Ω

∑

i 6=j
E · nij

∆Ω

xk
= lim

~~∆→0

∑

∆Ω ∈ Ω

∑

k

lim
∆xk→0

(
Ek|Pk+1/2

− Ek|Pk−1/2

)

∆xk
∆Ω,

lim
~~∆→0

∑

∆∂Ω ∈ ∂Ω

∑

i 6=j
E · nij

∆Ω

xk
= lim

~~∆→0

∑

∆Ω ∈ Ω

∑

k

∂Ek
∂xk

∆Ω,

lim
~~∆→0

∑

∆∂Ω ∈ ∂Ω

∑

i 6=j
E · nij

∆Ω

xk
= lim

~~∆→0

∑

∆Ω ∈ Ω

∇ · E ∆Ω. (A.11)

Finally, let the limit, when the volume element tends to zero, of the
finite sum, over all volume elements, of a real function, be defined, in equa-
tion A.12, as the integral.

lim
~~∆→0

∑

∆Ω ∈ Ω

φ ∆Ω ≡
∫

Ω
φ dΩ. (A.12)

By applying equation A.12 to equation A.11, the single most impor-
tant result of continuum mechanics, the divergence theorem, is yielded and
proved.

It must be noted, however, that this proof is only partial, as it considers
only cartesian coordinates and cartesian elementary control volumes. A full
proof would cope with a generic geometry. Typical complete proofs of the-
orem 1 depart from the integral notation and make use of the Fundamental
Theorem of Calculus. This proof uses it indirectly, and partially proves it
as well. Furthermore, the integral definition we provide in equation A.12 is
easily shown to be consistent with the Riemann integral. The more com-
plete Lebesgue integral definition, however, requires the introduction of a
measure for the open set Ω.
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A.1.5 Summing up

In the equation A.11, we define the divergence notation of E as ∇·E. Equa-
tion A.11 proves that the divergence represents the net balance of all the
fluxes ingoing and outgoing through the open-boundary of the volume ele-
ment and is, therefore, a useful indicator if there are sinks or source terms
within the volume element. The interest of the proof provided for theo-
rem 1, besides the fact that it doesn’t resorts to the Fundamental Theorem
of Calculus, is that it is particularly suited for solving numerical problems
by resorting to a numerical cartesian discretization of the medium. This
yields direct consequences in the fields of Contiuunm Mechanics as it shows
a sound way to derive consistent numerical schemes that can be applied to
solve engineering problems in fluid flow and heat and mass transfer.
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Adiabatic lapse rate, 82

Advection, 138

Advection-diffusion equation, 33

Arakawa
B grid, 128

C grid, 128

C-grid, 120

Archimedes

Principle, 82

Bottom stress, 43, 127
Boundary condition, 120, 129

Absorbing, 9

Active, 130

Clamped, 6

Dirichelet, 6, 129

Flather, 8
FRS, 6

No-slip, 129

Null-flux, 42, 129

Null-gradient, 137

NVIE, 132

NVOE, 130
Open, 130, 181

Orlansky, 8

Passive, 130

PML, 7

PRM, 9
Radiation, 7

Radiative, 130

Relaxation, 6

Sommerfeld, 7

Boussinesq approximation, 38, 41
Brunt-Vaisalla frequency, 65
Buoyancy, 41, 77

Cells
T type, 120, 128
U type, 120, 128
V type, 128

CFL criterion, 138
Continuity equation, 33, 41

Extended, 37
Coriolis acceleration, 41, 128
Coriolis frequency, 127
Cross-section, 266
Curl theorem, 14

Diffeomorphism, 18
Diffusion

Numerical, 152
Divergence theorem, 14, 263, 267
Drag coefficient

Air, 127
Bottom, 127

Eddy, 90
Einstein notation, 45
Ekman

Depth, 68
Layer, 68
Spiral, 67

Energy, 54, 141
Available potential, 90, 141
Internal, 60
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Kinetic, 58, 141

Perturbation potential, 141

Potential, 58

Specific internal, 60

Specific kinetic, 57
Specific potential, 58

Specific total, 61

Total, 58, 141

Enstrophy, 110
Entropy

Specific, 59

Equation of state, 42, 77

Euler

Equations, 113

Fick’s law, 68

Field

Vectorial, 263
Finite differences, 119, 133

Flow

Elliptic, 117

Hyperbolic, 117

Mono-phasic, 36
Multi-phasic, 36

Flux, 263, 264, 266

Force

Baroclinic, 122
Barotropic, 120, 122

Fourier’s law, 60

Freshwater cylinder experiment, 88

Froude number, 91, 142

Fundamental theorem of calculus, 14,
268

Gauss-Ostrogradsky theorem, see Di-
vergence theorem

Gaussian curvature, 117
Gaussian curve, 139

Geostrophic balance, 165

GOTM, 66

Gradient theorem, 15

Gravity constant
Local, 59
Reduced, 91

Half-life, 156
Haline contraction coefficient, 82
Heat flux, 74
Hodge star opeartor, 15
Hooke’s law, 83

Hydrostatic approximation, 41, 121
Hydrostatic pressure, 57, 121

Initial condition, 120, 136

Instability
Baroclinic, 90
Barotropic, 90

Kelvin-Stokes theorem, see Curl the-
orem

Lagrangean particle, 116
Lagrangian derivative, 30

Extended, 29
Land mask, 129

Leibniz integral rule, 35
Leibniz integration rule, 15
Length

Roughness, 127
Loss of significance, 152

Material derivative, 27
Extended, 29

Material particle, 31

Mesh, 119, 128
Non-regular, 119

Mixed layer, 65
Mixing

Vertical, 65

Molecular conduction, 59
Musical isomorphisms, 15
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Navier-Stokes equations, 20
Newton’s second law of motion, 39
Numerical

Péclet number, 158
Reynolds number, 158

Numerical error, 151
Numerical instability, 138
Numerical schemes

CTCS, 133
Leapfrog, 136
TVD, 93
Upwind, 110

Partial differential equation, 119
Pressure

Correction, 77
Gradient error, 93

Pressure-gradient error, 152
Primitive ocean equations, 41

Radiative exchange, 59
Reynold’s transport theorem, 16

Extended, 18
Reynolds decomposition, 61
Robert-Asselin filter, 136
Rossby

Internal radius of deformation, 90
Potential vorticity, 115

Rotation tensor, 116

Seawater density, see Equation of state
Shallow waters equations, 120, 126
Shear strain rate tensor, 116
Specific heat

Constant pressure, 59
Specific volume, 32
Sponge layer, 7
Stratification, 65
Surface boundary, 42

Temperature

Potential, 59
Potential, 82

Thermal conductivity, 59
Thermal expansion coefficient, 82
Thermocline, 65
Thermodynamics

First law, 59
Thermohaline circulation, 66
Transformation of vertical coordinates,

44

Unit partition, 267

Velocity
Curl, 114

Vertical coordinates, 44
Cartesian, 44
Generalized, 44, 96
Lagrangean, 93, 96
Sigma, 44, 96

Viscosity
Molecular, 62

Volume, 265
Control, 17
Specific, 26

von Karman constant, 44, 127
Vortex, 116
Vortice, 90

Wind
Stress, 127

Wind stress, 43
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